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Abstract

We study the design of settlement auctions for credit default swaps (CDS). We find

that the one-sided design of CDS auctions currently used in practice gives CDS buyers

and sellers strong incentives to distort the final auction price, in order to profit from

existing CDS positions. In the absence of frictions, the current auction mechanism

tends to overprice defaulted bonds given an excess supply and underprice them given

an excess demand. We propose a double auction to mitigate price biases and provide

robust price discovery. The predictions of our theory on bidding behavior are consistent

with CDS auction data.
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1 Introduction

This paper studies the design of settlement auctions for credit default swaps (CDS). A CDS

is a default insurance contract between a buyer of protection (“CDS buyer”) and a seller

of protection (“CDS seller”), and is written against the default of a firm, loan, or sovereign

country. The CDS buyer pays a periodic premium to the CDS seller on a given notional

amount of bonds until a default occurs or the contract expires—whichever is first. If a default

occurs before the CDS contract expires, then the CDS seller compensates the CDS buyer for

the default loss, that is, the face value of the insured bonds less the realized bond recovery

value. Because the realized recovery value is unobservable at the time of default, the market

uses CDS auctions, also known as “credit event auctions,” to determine the “fair” recovery

value of the defaulted bonds and thus the settlement payments on CDS. In doing so, CDS

auctions constitute a critical part of the markets for CDS, which, as of June 2011, have a

notional outstanding of more than $32 trillion and a gross market value of more than $1.3

trillion.1 Fair and unbiased prices from CDS auctions are therefore important for the proper

functioning of CDS markets, whose primary economic purposes include hedging credit risk

and providing price discovery on the fundamentals of companies and sovereigns.

First used in 2005, the current protocol for CDS auctions was hardwired in 2009 as the

standard method used for settling CDS contracts after default (International Swaps and

Derivatives Association 2009). From 2005 to June 2012, more than 120 CDS auctions have

been held for the defaults of companies (such as Fannie Mae, Lehman Brothers, and General

Motors) and sovereign countries (Ecuador and Greece).

A CDS auction consists of two stages, as described in detail in Section 2. In the first

stage, dealers and market participants submit “physical settlement requests,” which are

price-insensitive market orders used for buying or selling the defaulted bonds. The sum of

1See the semiannual OTC derivatives statistics, Bank for International Settlements, June 2011.
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these physical settlement requests is the “open interest.” The first stage also produces the

“initial market midpoint,” which is effectively an estimate of the price at which dealers are

willing to make markets in the defaulted bonds. The second stage is a uniform-price auction,

in which participants submit limit orders (on the defaulted bonds) to match the first-stage

open interest. The price at which the total of the second-stage bids equal the first-stage open

interest is determined as the final auction price. After the final price is announced, CDS

sellers pay CDS buyers the face value of the defaulted bonds less the final auction price in

cash—a process called “cash settlement.” Bond buyers and bond sellers, who are matched in

the auction, trade the physical bonds at the final auction price—a process called “physical

settlement.”2

We show that the CDS auction procedure currently used in practice encourages price

manipulation and tends to produce a biased final price, relative to the fair recovery value

of the defaulted bonds. To see the intuition, suppose that everyone is risk neutral, and the

first-stage open interest is to sell $200 million notional of bonds, whose recovery value is

commonly known to be $50 per $100 face value. We consider a CDS seller, say bank A,

who has sold protection on $100 million notional of bonds. Because bank A pays the loss

on the defaulted bonds to its CDS counterparty, the higher the final auction price, the less

bank A must pay. For example, if the final auction price is the true recovery value of $50,

then bank A pays $50 million. If, however, the final auction price is $100, then bank A pays

nothing. Thus, bank A has a strong incentive to increase the CDS final price in order to

reduce the bank’s payments to its CDS counterparty. The same incentive applies to other

CDS sellers. Therefore, CDS sellers aggressively bid in the second stage of the auction.

2In conventional terms, physical settlement refers to the process in which the CDS buyer delivers the
defaulted bonds to the CDS buyer, who, in turn, pays the bond’s face value to the CDS buyer. Under this
older physical settlement method, a defaulted bond may need to be “recycled” several times before all CDS
claims are settled, which can artificially increase the bond price and create the risk that the same CDS may
be settled at different prices at different times. The current CDS auction design is partly motivated by these
concerns (Creditex and Markit 2009).
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Barring restrictions on the final auction price, and for most plausible cases, the final auction

price is strictly higher than the true recovery value of the defaulted bonds.

Why do arbitrageurs and CDS buyers not correct this price bias? After all, CDS buy-

ers are adversely affected by high settlement prices because a high final price reduces the

payments they receive from CDS sellers. The answer is that the one-sided auction prevents

price correction. For example, conditional on an open interest to sell, bidders in the second

stage can only submit limit orders to buy. No one is allowed to submit sell orders in this

case, so CDS buyers and arbitrageurs have no choice but to buy nothing in the auction and

to have no say in the final price. By symmetry, conditional on an open interest to buy, CDS

buyers submit aggressive sell orders and push the final auction price below the fair recovery

value of bonds. As we show, this intuition of price biases generalizes to risk-averse traders as

well. With risk aversion, a trader’s “fair” valuation of a bond becomes the expected recovery

value weighted by the trader’s marginal utility.

Our analysis strongly suggests that a double auction can greatly reduce, if not eliminate,

price biases. Under a double auction design, limit orders in the second stage can be submitted

in both directions, buy and sell, regardless of the open interest. With a double auction, if

bank A—from our earlier example—pushes the final price from its fair value $50 to a higher

level, say $60, CDS buyers and arbitrageurs can submit sell orders at $60, making a profit

of $10 and simultaneously pushing the price back toward its true value. Under general

conditions, a double auction exactly pins down the final price at the bond’s fair recovery

value.

In addition to correcting price biases, a double auction provides robust and effective price

discovery. In a setting where dealers receive private signals regarding the fair value of the

defaulted bonds, we show that the double auction aggregates private information dispersed

across dealers. The price-discovery benefit of a double auction further calls into question the

rationale of the one-sided design used in CDS auctions today.
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Our theoretical results yield testable predictions of bidding behavior. For example, be-

cause a dealer3 who submits a physical buy request in the first stage is more likely to be a net

CDS seller than a net CDS buyer, our results predict that such a dealer would aggressively

bid in the second stage in order to raise the final auction price. Using data from 94 CDS

auctions between 2006 and 2010, we indeed find that, conditional on a sell open interest,

dealers with physical buy requests submit more aggressive limit buy orders in the second

stage. Conversely, conditional on an open interest to buy, we find that dealers with physical

sell requests submit more aggressive limit sell orders in the second stage. These empirical

findings are consistent with our theoretical predictions.

Our paper contributes to and complements the existing literature on CDS auctions.

Theoretically, we focus on the design of CDS auctions, whereas Chernov, Gorbenko, and

Makarov (2012) focus on frictions in bond markets. For example, Chernov, Gorbenko, and

Makarov (2012) show that, for an open interest to sell, the CDS auction prices can be lower

than the fair values of defaulted bonds if frictions prevent some aggressive bidders (e.g.

CDS sellers) from buying bonds. While these frictions are important in practice, they are

separate from our focus on manipulative bidding incentives and associated market-design

perspective on CDS auctions. Moreover, our information aggregation result under a double

auction goes one step beyond the symmetric-information model of Chernov, Gorbenko, and

Makarov (2012).

Empirically, we exploit the novel CDS auction data to test bidding behavior predicted

by our theory, whereas existing empirical studies predominately compare bond prices with

CDS auction prices. For example, Chernov, Gorbenko, and Makarov (2012) and Gupta

and Sundaram (2011) find that the final prices from CDS auctions tend to be lower than

corresponding bond transaction prices several days before and after the auction. In an earlier

3For brevity, by a dealer we mean a dealer and his customers who submit bids through him. In the data,
a dealer aggregates his own bids with his customers’ bids and report them together under the dealer’s name.
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sample, Helwege, Maurer, Sarkar, and Wang (2009) find that CDS auction prices and bond

prices are close to each other. Coudert and Gex (2010) provide a detailed discussion on

the performance of a few large CDS auctions. As we elaborate in Section 7, the time-series

pattern of bond prices could be affected by many factors, including the price caps and floors,

risk premia, illiquidity, capital immobility, and the cheapest-to-deliver option, among others.

For this reason, the fair price in our baseline model may not be accurately measured by the

bond prices near the auction dates or by the realized recovery values in the future. Compared

with bond transaction data, the CDS auction data provide a cleaner test of our theory. To

the extent that all participant in CDS auctions are subject to similar market imperfections,

the cross-section of bidding behaviors in the auction-level data can better isolate the effect of

manipulative bidding incentives from that of market frictions. Since our empirical strategy

and those of existing studies focus on different aspects of CDS auctions, our results and

theirs are complementary.

2 The Two-Stage CDS Auctions

This section provides an overview of CDS auctions. Detailed descriptions of the auction

mechanism are also provided by Creditex and Markit (2009).

The CDS auction consists of two stages. In the first stage, the participating dealers4

submit “physical settlement requests” on behalf of themselves and their clients. These

physical settlement requests indicate if they want to buy or sell the defaulted bonds as well

as the quantities of bonds they want to buy or sell. Importantly, only market participants

with nonzero CDS positions are allowed to submit physical settlement requests, and these

requests must be in the opposite direction of, and not exceeding, their net CDS positions.

4In the auctions between 2006 and 2010, participating dealers include ABN Amro, Bank of America
Merrill Lynch, Barclays, Bear Stearns, BNP Paribas, Citigroup, Commerzbank, Credit Suisse, Deutsche
Bank, Dresdner, Goldman Sachs, HSBC, ING Bank, JP Morgan Chase, Lehman Brothers, Merrill Lynch,
Mitsubishi UFJ, Mizuho, Morgan Stanley, Nomura, Royal Bank of Scotland, Société Générale, and UBS.
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For example, suppose that bank A has bought CDS protection on $100 million notional of

General Motors bonds. Because bank A will deliver defaulted bonds in physical settlement,

the bank can only submit a physical sell request with a notional between 0 and $100 million.

Similarly, a fund that has sold CDS on $100 million notional of GM bonds is only allowed

to submit a physical buy request with a notional between 0 and $100 million.5 Participants

who submit physical requests are obliged to transact at the final price, which is determined

in the second stage of the auction and is thus unknown in the first stage. The net of total

buy physical request and total sell physical request is called the “open interest.”

Also, in the first stage, but separately from the physical settlement requests, each dealer

submits a two-way quote, that is, a bid and an offer. The quotation size (say $5 million)

and the maximum spread (say $0.02 per $1 face value of bonds) are predetermined in each

auction. Bids and offers that cross each other are eliminated. The average of the best halves

of remaining bids and offers becomes the “initial market midpoint” (IMM), which serves as

a benchmark for the second stage of the auction. A penalty called the “adjustment amount”

is imposed on dealers whose quotes are off-market.

The first stage of the auction concludes with the simultaneous publications of (i) the

initial market midpoint, (ii) the size and direction of the open interest, and (iii) adjustment

amounts, if any.

Figure 1 plots the first-stage quotes (left-hand panel) and physical settlement requests

(right-hand panel) of the Lehman Brothers auction in October 2008. The bid-ask spread

quoted by dealers was fixed at 2 per 100 face value, and the initial market midpoint was

9.75. One dealer whose bid and ask were on the same side of the IMM paid an adjustment

amount. Of the 14 participating dealers, 11 submitted physical sell requests and 3 submitted

physical buy requests. The open interest to sell was about $4.92 billion.

5There are no formal external verifications that one’s physical settlement request is consistent with one’s
net CDS position.
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Figure 1: Lehman Brothers CDS Auction, First Stage
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In the second stage of the auction, all dealers and market participants—including those

without any CDS position—can submit limit orders to match the open interest. Nondealers

must submit orders through dealers, and there is no restriction regarding the size of limit

orders one can submit. If the first-stage open interest is to sell, then bidders must submit

limit orders to buy. If the open interest is to buy, then bidders must submit limit orders to

sell. Thus, the second stage is a one-sided market. The final price, p∗, is determined as in

a uniform-price auction. Without loss of generality, we consider an open interest to sell, in

which bidders submit limit orders to buy. Higher-priced limit orders are matched against the

open interest before lower-priced limit orders are matched. If the limit orders are sufficient in

matching the open interest, then the final price is set at the limit price of the last limit order

used. Limit orders with prices superior to the final price are all filled, whereas limit orders

with prices equal to the final price are allocated pro-rata, if necessary. If the limit orders

are insufficient in matching the open interest, then the final price is 0. The determination

of final price for a buy open interest is symmetric. Finally, the auction protocol imposes the
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restriction that the final price cannot exceed the IMM plus a predetermined “cap amount,”

usually $0.01 or $0.02 per $1 face value. Therefore, for an open sell interest, the final price

is set at

p∗ = min (M + ∆,max(pb, 0)) , (1)

where M is the initial market midpoint, ∆ is the cap amount, and pb is the limit price of the

last limit buy order used. Symmetrically, for an open buy interest, the final price is set at

p∗ = max (M −∆,min(ps, 1)) , (2)

where ps is the limit price of the last limit sell order used. If the open interest is zero, then

the final price is set at the IMM. The announcement of the final price, p∗, concludes the

auction.

After the auction, bond buyers and sellers that are matched in the auction trade the

bonds at the price of p∗; this is called “physical settlement.” In addition, CDS sellers pay

CDS buyers 1− p∗ per unit notional of their CDS contract; this is called “cash settlement.”

Figure 2 plots the aggregate limit order schedule in the second stage of the Lehman

auction. For any given price p, the aggregate limit order at p is the sum of all limit orders

to buy at p or above. The sum of all submitted limit orders was over $130 billion, with limit

prices ranging from 10.75 (the price cap) to 0.125 per 100 face value. The final auction price

was 8.625. CDS sellers thus pay CDS buyers 91.375 per 100 notional of CDS contract.

3 Price Biases in CDS Auctions

In this section we model bidding behavior in CDS auctions and associated equilibrium final

price. In Sections 3.1–3.3, we characterize the optimal bidding strategies and price biases

in the second stage “subgame,” taking the first-stage open interest and physical requests
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Figure 2: Lehman Brothers CDS Auction, Second Stage
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as given. In Section 3.4 we endogenize the first-stage strategies and show that price biases

persist. Finally, in Section 3.5 we show that the key intuition of price bias carries through

to risk-averse traders. For simplicity, we do not model dealers’ quotes in the first stage or

the price cap or floor in the second stage. The potential effect of price caps and floors are

discussed in Section 7.

3.1 Model

There are n risk-neutral dealers, each with a CDS position Qi, 1 ≤ i ≤ n, where Qi is dealer

i’s private information. Because CDS contracts have zero net supply, we have

n∑
i=1

Qi = 0. (3)

If dealer i is a CDS buyer, then Qi > 0. If dealer i is a CDS seller, then Qi < 0. If dealer

i has a zero CDS position, then Qi = 0. For a realization of CDS positions {Qi}ni=1, let

B = {i : Qi > 0} be the set of CDS buyers and S = {i : Qi < 0} be the set of CDS sellers.
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The defaulted bonds on which the CDS are written have an uncertain recovery rate, v,

whose probability distribution on [0, 1] is commonly known by all dealers. (We consider

asymmetric but interdependent valuations in Section 5.) Thus, all dealers assign a common

value of E(v) to each unit face value of the defaulted bonds. Since all dealers have a commonly

known valuation for the bonds, a dealer’s existing bond position merely adds a constant to

his total profits. Thus, we do not need to model dealers’ existing bond positions.

We denote by ri the physical settlement request submitted by dealer i in the first stage

of the auction. As described in Section 2, ri has the opposite sign as Qi, and |ri| ≤ |Qi|. A

CDS seller (with Qi < 0) can submit a physical buy request (ri ≥ 0), and a CDS buyer (with

Qi > 0) can submit a physical sell request (ri ≤ 0). A dealer who has zero CDS position

is not allowed to submit physical settlement request. All physical settlement requests are

summed to form the open interest

R =
n∑
i=1

ri. (4)

The physical settlement requests {ri}ni=1 are published at the end of the first stage of the

auction.6 Conditional on {ri}ni=1, CDS positions {Qi}ni=1 have the joint distribution function

F .

As described in Section 2, the second stage is a uniform-price auction, conditional on the

open interest R. For an open interest to sell (R < 0), every dealer simultaneously submits a

demand schedule xi : [0, 1]×R→ [0,∞) that is contingent on his CDS position. Note that for

R < 0, xi must be nonnegative because the second stage of the auction only allows buy limit

orders. The value xi(p;Qi) specifies the maximum amount of bonds that dealer i with CDS

position Qi is willing to buy at the price p. For simplicity, suppose that xi( · ;Qi) is strictly

decreasing and differentiable, so x′i(p;Qi) < 0 whenever xi(p;Qi) > 0. The monotonicity

6This modeling choice is made for notational simplicity and does not affect our results. In practice,
only the open interest R is published at the end of the first stage. In this case, dealer i’s demand schedule
xi( · ;Qi, ri) is contingent on both his CDS position and physical settlement request, and subsequent analysis,
including the proof of Proposition 1, still goes through.
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and differentiability of the demand schedules allow a simple analytical characterization of

the equilibria without changing their qualitative nature.7 The final auction price p∗(Q) clears

the market and is implicitly defined by

n∑
i=1

xi(p
∗(Q);Qi) = −R, (5)

for every realization of Q = {Qi}ni=1.

To rule out trivialities, we restrict modeling attention to demand schedules for which the

market-clearing price p∗(Q) defined by (5) exists. Since dealer i values the asset at E(v), his

payoff, given a realization of Q, is

Πi(Q) = (ri + xi(p
∗(Q);Qi))(E(v)− p∗(Q)) +Qi(1− p∗(Q)), (6)

where the first term represents the dealer’s profit or loss from trading the bonds, and the

second term represents the dealer’s payoff (either positive or negative) from his outstanding

CDS position.

Symmetrically, for an open interest to buy (R > 0), every dealer submits a supply

schedule xi : [0, 1]×R→ (−∞, 0], with the property that x′i(p;Qi) < 0 whenever xi(p;Qi) <

0. Note that we use negative numbers {xi(p)} to describe sell orders. Because x′i(p;Qi) < 0,

a higher price p implies a more negative xi(p;Qi), that is, dealer i wants to sell more bonds

at a higher price.8 Under our sign convention, a dealer’s payoff for a buy open interest is

still given by (6).

7For example, Kastl (2011) shows that in Wilson’s divisible auction model, if bidders are restricted
to submit at most K bids (so that the demand schedule is a K-step function), the resulting equilibrium
converges in K to an equilibrium that consists of differentiable demand schedules. If a large number of
limit orders is allowed, discrete demand schedules are well approximated by differentiable ones. Kremer and
Nyborg (2004a) show that continuous demand schedules naturally arise when allocation rule is “pro-rata on
the margin,” as in CDS auctions.

8This is equivalent to the conventional notion in which supply schedules are upward-sloping.
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3.2 Characterizing Equilibria in the Second Stage

We now characterize Bayesian Nash equilibria of the second-stage auction. In a Bayesian

Nash equilibrium {xi}ni=1, each dealer i’s demand schedule xi( · ;Qi) is optimal, given his

conditional belief F ( · | Qi) about others dealers’ CDS positions, {Qj}j 6=i, and other dealers’

demand schedules, {xj}j 6=i.

Proposition 1. Suppose that the first-stage open interest is to sell. Then, in any Bayesian

Nash equilibrium of the one-sided auction in the second stage:

(i) The final price satisfies p∗(Q) ≥ E(v) for every realization of Q = {Qi}ni=1.

(ii) All dealers with positive or zero CDS positions receive zero share of the open interest.

That is, for every realization of Q, xi(p
∗(Q);Qi) = 0 if i 6∈ S.

(iii) For every realization of Q, the final price p∗(Q) > E(v), unless all CDS buyers submit

full physical settlement requests (i.e., ri = −Qi for all i ∈ B).

Symmetrically, suppose that the first-stage open interest is to buy. Then, in any Bayesian

Nash equilibrium of the one-sided auction in the second stage:

(i) The final price satisfies p∗(Q) ≤ E(v) for every realization of Q = {Qi}ni=1.

(ii) All dealers with negative or zero CDS positions receive zero share of the open interest.

That is, for every realization of Q, xi(p
∗(Q);Qi) = 0 if i 6∈ B.

(iii) For every realization of Q, the final price p∗(Q) < E(v), unless all CDS sellers submit

full physical settlement requests (i.e., ri = −Qi for all i ∈ S).

Proof. The proof is provided in Appendix A.

Proposition 1 reveals that, under fairly general conditions, the final auction price is

either strictly above or strictly below the fair value of the bond. Moreover, this bias is in the
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opposite direction of the open interest: an open interest to sell produces too high a price,

and an open interest to buy produces too low a price.

The intuition of Proposition 1 is simple. Given a sell open interest, CDS sellers have

strong incentives to increase the final auction price in order to reduce payments to CDS

buyers. The open interest cannot be larger than the CDS positions of CDS sellers, so the

expected benefit of reducing CDS payments dominates the expected cost associated with

buying bonds at an artificially high price. Thus, CDS sellers bid aggressively in order to

increase the final auction price. Because of the one-sided nature of the auction, CDS buyers

and arbitrageurs can only decrease the auction price by reducing the price and quantity

of their buy orders. Once their demands reach zero, it is impossible for CDS buyers and

arbitrageurs to further counteract the upward price distortion by CDS sellers. An artificially

high price is thus sustained in equilibrium. The intuition for a buy open interest is sym-

metric: CDS buyers have strong incentives to suppress the bond price, and CDS sellers and

arbitrageurs cannot counteract this price suppression because of the one-sided nature of the

auction. We further illustrate the intuition of Proposition 1 in Section 3.3.

Proposition 1 implies that prices are strictly biased in equilibrium unless (a) every CDS

buyer submits a full physical sell request, given a sell open interest or (b) every CDS seller

submits a full physical buy request, given a buy open interest. Full physical settlement

requests are, however, unlikely to apply to everyone. For example, for CDS buyers who do

not own the underlying bonds and CDS sellers who do not wish to receive the defaulted

bonds, cash settlement is more natural than physical settlement. In Section 3.4 we explic-

itly construct an equilibrium in which dealers submit zero physical requests with positive

probabilities.

The equilibria of Proposition 1 differ from “underpricing” equilibria characterized by

Wilson (1979) and Back and Zender (1993), who study divisible auctions with a supply to

sell. In these models, the flexibility of bidding with demand schedules produces equilibria
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in which buyers tacitly collude and drive the final auction price below the commonly known

value of the asset. However, in CDS auctions with open interests to sell, these underpricing

equilibria do not exist because CDS sellers bid high prices in order to reduce CDS payments.9

The derivative externality in CDS auctions complements other forms of auction external-

ities documented in the literature. In Nyborg and Strebulaev (2004), for example, traders

who have pre-established short positions in the auctioned asset bid differently from those

who have long positions because the latter may short-squeeze the former after the auction.

Bulow, Huang, and Klemperer (1999) and Singh (1998) consider takeover contests with toe-

holds (i.e. existing positions in the firm to be acquired). They find that toeholders behave

differently from outside bidders because a bid from a toeholder is also an offer for his existing

position. Jehiel and Moldovanu (2000) study a single-unit second price auction in which a

bidder’s utility directly depends on the value of the other bidder. In a multi-unit auction set-

ting, Aseff and Chade (2008) characterize the revenue-maximizing mechanism when buyers’

values depend on who else win the goods.

3.3 Commonly Known CDS Positions

The objective of this subsection is to further illustrate the intuition of price biases. To reduce

technical complication, we sketch the proof for a special case of Proposition 1, namely when

the CDS positions Q = {Qi}ni=1 are commonly known by the dealers. Since {Qi}ni=1 are

common knowledge, we write the final price p∗(Q) as p∗ and the demand schedule xi(p;Qi)

as xi(p). Without loss of generality, we consider an open interest to sell (R < 0).

9Several studies examine how underpricing in the Wilson (1979) model may be reduced or eliminated.
For example, Back and Zender (1993) generalize Wilson’s result and suggest that discriminatory auctions
can reduce underpricing. Kremer and Nyborg (2004a) demonstrate that an alternative pro-rata allocation
rule can encourage aggressive bidding and eliminate underpricing. Kremer and Nyborg (2004b) show that
underpricing can also be made arbitrary small if, among other restrictions, bidders can only submit a finite
number of bids, or there is a tick size or quantity multiple. Finally, Back and Zender (2001), LiCalzi and
Pavan (2005), and McAdams (2007) show that underpricing can be reduced if the seller is allowed to adjust
the supply after bids are submitted.
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We can rewrite (6) as

Πi(p
∗) = (ri + xi(p

∗))(E(v)− p∗) +Qi(1− p∗)

=

(
ri −R−

∑
j 6=i

xj(p
∗)

)
(E(v)− p∗) +Qi(1− p∗). (7)

In equilibrium, each dealer i submits an xi( · ) that maximizes his payoff Πi, given

{xj( · )}j 6=i. In equilibrium, xi(p
∗) +

∑
j 6=i xj(p

∗) = −R and each xj is strictly downward-

sloping, so there is a one-to-one mapping between xi(p
∗) and p∗. Thus, we can write the

first-order condition of dealer i in terms of the market-clearing price p∗ (instead of quantity

xi):

Π′i(p
∗) = −

(
ri −R−

∑
j 6=i

xj(p
∗)

)
−

(∑
j 6=i

x′j(p
∗)

)
(E(v)− p∗)−Qi

= −(ri + xi(p
∗) +Qi)−

(∑
j 6=i

x′j(p
∗)

)
(E(v)− p∗). (8)

Since
∑n

i=1[ri + xi(p
∗) + Qi] = R +

∑n
i=1 xi(p

∗) +
∑n

i=1Qi = 0, we can always find a

dealer i such that −ri − xi(p∗) − Qi ≥ 0. By downward-sloping demand schedule, we have∑
j 6=i x

′
j(p
∗) > 0, so it must be that E(v)− p∗ ≤ 0; otherwise, Π′i(p

∗) > 0 and dealer i would

increase the price by bidding more at p∗. Thus, in equilibrium p∗ ≥ E(v). In Appendix A,

we show that under partial physical request the equilibrium price p∗ > E(v).

Example 1. For concreteness, we now explicitly construct an equilibrium in which, under

partial physical sell requests, and given an open interest to sell, the final price is p∗ = 1.

Specifically, for all i ∈ S, we let

ai =
|Qi + ri|∑
j∈S |Qj + rj|

|R|. (9)
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This ai is the quantity received by CDS seller i in the equilibrium we are constructing.

Because at least one CDS buyer has submitted a partial physical settlement request, we

must have
∑

j∈S |Qj + rj| > |R| > 0, and hence ai < |Qi + ri| whenever ai > 0. For each

i ∈ S with ai = 0, we set bi = 0. For each i ∈ S with ai > 0, we choose sufficiently small

bi > 0 with the property that

|Qi + ri| − ai > (1− E(v))
∑

j 6=i,j∈S

bj. (10)

Finally, for each i ∈ S, we set

xi(p) = ai + bi(1− p).

For k 6∈ S, we arbitrarily set xk(p), under the restriction that xk(p) = 0 in a neighborhood

of p = 1. For any CDS seller i with ai > 0, (10) implies that his first-order condition (8)

at p∗ = 1 satisfies Π′i(1) > 0. For any CDS seller j with aj = 0, we have Π′j(1) < 0.

For any k 6∈ S, we also have Π′k(1) < 0. Thus, p∗ = 1 is supported as an equilibrium by

strategy {xi}ni=1. In this equilibrium, CDS sellers submit limit orders with sufficiently “flat”

slopes, so it is inexpensive to push the final price to 1. For each CDS seller involved in this

manipulation (those with ai > 0), the reduction in settlement payments outweighs the cost

of buying the bonds at par. All other dealers have no influence on the final price.

3.4 Endogenizing First-Stage Strategies

In this subsection, we endogenize the choice of physical settlement requests in the first

stage and show that price biases can persist in equilibrium. In the first stage, each dealer i

selects the optimal physical settlement request ri, taking other dealers’ strategies as given.

We characterize a mixed-strategy equilibrium in which every dealer is indifferent between

submitting a full physical settlement request and a zero physical settlement request. This
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equilibrium captures dealers’ uncertainty regarding the impact of their physical requests on

the open interest and hence the direction of the price bias.

To see the intuition of the mixed-strategy equilibrium, we consider a CDS buyer, who

can only submit a physical request to sell. On the one hand, by submitting a zero physical

request, the CDS buyer maximizes the likelihood that the open interest is to buy (i.e. R > 0),

which allows him to submit aggressive sell orders in the second stage and benefit from the

low (and biased) final price. On the other hand, by submitting a full physical request, the

CDS buyer eliminates the risk of having to cash settle at the high (and biased) final price

in the event that the open interest is to sell. In the mixed-strategy equilibrium, these two

incentives exactly offset each other.

Formally, we follow the setting of Section 3.3 and suppose that the CDS positions are

common knowledge. We conjecture that each dealer i chooses a full physical request (i.e.

ri = −Qi) with probability qi ∈ (0, 1) and chooses a zero physical request (i.e. ri = 0) with

probability 1− qi.

Without loss of generality, we analyze the strategy of dealer 1, who is a CDS buyer with

Q1 > 0. First, recall that dealer 1 makes a profit of

Q1(1− E(v)) + (Q1 + r1 + x1)(E(v)− p∗). (11)

So, by submitting r1 = −Q1 and setting x1 = 0, dealer 1 makes a fixed profit of Q1(1−E(v)),

regardless of the open interest and the final price.

Next, we calculate dealer 1’s profit from submitting r1 = 0. Among multiple equilibria

in the second stage, we select the one characterized in Example 1:

1. If R < 0, then CDS sellers push the final price up to p∗ = 1. CDS seller i buys

|Qi + ri|∑
j∈S |Qi + ri|

|R|
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units of the bonds, where S denotes the set of CDS sellers. CDS buyers receive zero

share of the open interest.

2. If R > 0, then CDS buyers push the final price down to p∗ = 0. CDS buyer i sells

Qi + ri∑
j∈B(Qi + ri)

R

units of the bonds, where B denotes the set of CDS buyers. CDS sellers receive zero

share of the open interest.

3. If R = 0, then p∗ = E(v).

Therefore, by submitting r1 = 0, dealer 1 makes an expected profit of

Q1(1− E(v)) + E

[
−IR<0Q1(1− v) + IR>0

(
Q1 −

Q1∑
j∈B(Qj + rj)

R

)
v

∣∣∣∣∣ r1 = 0

]

=Q1(1− E(v)) +Q1 E

[
−(1− v) + IR>0

(
1−

∑
j 6=1 rj∑

j∈B(Qj + rj)
v

) ∣∣∣∣∣ r1 = 0

]
, (12)

where I is the indicator function, and the expectation E takes into account the distribution

of other dealers’ physical requests {rj}j 6=1. Therefore, for dealer i to mix between ri = −Qi

and ri = 0, we must have

1− E(v) = E

[
IR>0

(
1−

∑
j 6=1 rj∑

j∈B,j 6=1(Qj + rj) +Q1

v

) ∣∣∣∣∣ r1 = 0

]
, (13)

which is a polynomial equation in other dealers’ mixing strategies, {qj}j 6=1.

For each other dealer i 6= 1, we can apply the same argument and obtain an indifference

condition similar to (13). Since there are n polynomial equations and n unknowns, we

expect a solution {qi}ni=1 to exist. In Appendix A, we specify the off-equilibrium strategies

and verify that dealers do not wish to deviate from their equilibrium strategy of mixing
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between r1 = −Q1 and r1 = 0. This completes the characterization of the mixed-strategy

equilibrium.

For concreteness and further illustration of the intuition, we now explicitly characterize

a mixed-strategy equilibrium in a symmetric market where all CDS buyers have the same

CDS position, and all CDS sellers have the same CDS position.

Example 2. Suppose that there are k = n/2 symmetric CDS buyers and k symmetric CDS

sellers. Their CDS positions satisfy Q1 = · · · = Qk > 0 and Qk+1 = · · · = Q2k = −Q1 < 0.

The following proposition explicitly characterizes a subgame-perfect mixed-strategy equilib-

rium, in which the mixing probability qi = qB for all i ∈ B and qi = qS for all i ∈ S, for

some qB, qS ∈ (0, 1).

Proposition 2. In the market with symmetric dealers, there exists a mixed-strategy equilib-

rium of the two-stage auction, in which the first-stage mixing probabilities qB ∈ (0, 1) and

qS = 1− qB solve

k∑
l=0

l−1∑
j=0

(
k − 1

j

)
qjB(1− qB)k−1−j

(
k

l

)
qlS(1− qS)k−l

k − l
k − j

E(v) (14)

=
k∑
l=0

k−1∑
j=l+1

(
k − 1

j

)
qjB(1− qB)k−1−j

(
k

l

)
qlS(1− qS)k−l(1− E(v)).

Proof. See Appendix A.

The mixed-strategy equilibrium of the first stage differs from the first-stage equilibrium

of Chernov, Gorbenko, and Makarov (2012). In the model of Chernov, Gorbenko, and

Makarov (2012), one side of the market, say CDS buyers, submit full physical requests,

whereas the other side of the market, say CDS sellers, submit zero physical requests. Thus,

the equilibrium of Chernov, Gorbenko, and Makarov (2012) predicts that |R| =
∑

i∈B |Qi|

with probability 1, that is, the open interest in a CDS auction is the same as the total notional

outstanding on one side of the market. By contrast, in the mixed-strategy equilibrium of
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this section, both sides of the market submit partial physical requests with strictly positive

probability. Partial physical requests imply that |R| <
∑

i∈B |Qi| with strictly positive

probability and prices are strictly biased (see Proposition 1).

3.5 Risk Aversion

In this short subsection, we show that our basic intuition on the price bias generalizes to

risk-averse dealers.

As in Section 3.3, we suppose that CDS positions {Qi}ni=1 are common knowledge and that

the fair recovery value v of defaulted bonds has a commonly known probability distribution.

We relax the risk-neutrality assumption and let dealer i to have utility function ui(mi), where

mi ≡ (v − p)(xi + ri) + (1− p)Qi (15)

is dealer i’s profit. In the above expression, xi is the quantity of bonds allocated to dealer i,

ri is dealer i’s physical settlement request, and the expectation is taken over all realizations

of v. The utility functions {ui}ni=1 can be distinct, and they satisfy u′i( · ) > 0.

Given an equilibrium price of p, dealer i has the expected utility

Ui(p) = E[ui((v − p)(xi + ri) + (1− p)Qi)]. (16)

Each dealer i maximizes the expected utility E[ui(mi)] by choosing the optimal downward-

sloping demand schedules xi(p). With risk aversion, the “fair” price for dealer i is no longer

E(v), but

E[u′i(mi)v]

E[u′i(mi)]
,

that is, the expected recovery value v weighted by his marginal utility u′i(mi).
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Proposition 3. Suppose that the CDS positions {Qi} are common knowledge and that deal-

ers are risk averse. Then, in any equilibrium of the one-sided auction in the second stage:

(a) If the open interest is to sell, then for any CDS seller i, such that ri +xi(p
∗) +Qi < 0,

we have

p∗ >
E[u′i(mi)v]

E[u′i(mi)]
. (17)

(b) If the open interest is to buy, then for any CDS buyer i, such that ri +xi(p
∗) +Qi > 0,

we have

p∗ <
E[u′i(mi)v]

E[u′i(mi)]
. (18)

To see the intuition of Proposition 3, consider the case of a sell open interest. Dealer i’s

marginal utility at the equilibrium price p∗ is

U ′i(p
∗) = E

[
u′i(mi) ·

(
−ri − xi(p∗)−Qi −

∑
j 6=i

x′j(p
∗)(v − p∗)

)]

= (−ri − xi(p∗)−Qi)E [u′i(mi)]−
∑
j 6=i

x′j(p
∗)E [u′i(mi)(v − p∗)] , (19)

where the second equality follows because p∗ is fixed here, and the expectation is taken over

realizations of v. We claim that if dealer i’s net position ri + xi(p
∗) + Qi is negative, then

E[u′i(mi)(v − p∗)] must be negative; otherwise, because x′j(p
∗) < 0, we have Π′i(p

∗) > 0,

and dealer i would increase the equilibrium price by increasing his bids. Therefore, p∗ >

E[u′i(mi)v]/E[u′i(mi)]. In other words, the bond is “overpriced” for CDS seller i, relative to

the expected recovery value v weighted by his marginal utility. The CDS seller is nonetheless

willing to purchase the overpriced bond in order to increase its price and reduce his CDS

liabilities. Moreover, as long as some CDS buyer submits a partial physical settlement

request, there always exists some CDS seller i with ri + xi(p
∗) + Qi < 0, as shown in

Proposition 1. The intuition for an open interest to buy is symmetric.
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4 A Double Auction Proposal

As we show in Section 3, price biases occur because the second stage of CDS auctions is

one-sided. In this section, we propose a double auction, in which dealers can submit both

buy and sell limit orders, regardless of the open interest from the first stage. Under a double

auction, an artificially high price is corrected by sell orders, and an artificially low price is

corrected by buy orders. As a result, a double auction produces an unbiased price.

Formally, for each i, we allow dealer i’s demand schedule xi : [0, 1]×R→ R to take both

positive and negative values. Demand schedules are differentiable and strictly decreasing in

price p. The double auction executes orders in accordance with price priority. Because the

first-stage open interest consists of price-independent market orders, the open interest has

higher execution priority than do limit orders on the same side of the market. For example,

if the open interest is to sell (R < 0), then limit buy orders are first used to match the open

interest before they are used to match limit sell orders. With the exception that the double

auction replaces the one-sided auction, the model here is identical to that in Section 3. The

final market-clearing price p∗(Q) still satisfies
∑n

i=1 xi(p
∗(Q);Qi) +R = 0.

Proposition 4. For either direction of the open interest and in any Bayesian Nash equilib-

rium of the double auction:

(i) The final price satisfies p∗(Q) = E(v) for every realization of Q = {Qi}ni=1.

(ii) Every dealer i clears his CDS position. That is, xi(E(v);Qi) + ri + Qi = 0 for every

realization of Q and for all i.

Proof. The proof is similar to that of Proposition 1 and is omitted.

The double auction corrects price biases by allowing buyers and sellers to jointly deter-

mine the auction final price. For example, when CDS sellers try to increase the final auction

price above E(v), arbitrageurs can submit sell orders at prices higher than E(v), making a
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profit and simultaneously correcting the overpricing. Similarly, attempts by CDS buyers to

decrease the auction final price below E(v) are counterbalanced by arbitrageurs who submit

buy orders at prices lower than E(v).

The double auction corrects price biases in CDS auctions precisely because of the out-

standing CDS positions. Without a similar externality, a double auction need not correct

price biases. For example, in the “collusive” equilibria studied by Wilson (1979), buyers

coordinate to bid low prices, which drives the final sale price below the fair value of the auc-

tioned asset. Adding a double auction in Wilson’s model does not correct the underpricing

because no one wishes to sell the asset at a price below its fair value.

5 Price Discovery in Double Auctions

In addition to correcting price distortions, a double auction has the advantage of aggregating

dispersed information regarding the fair value of defaulted bonds. In this section we formally

demonstrate the price-discovery property of the double auction in the CDS setting. Our

analysis in this section extends the divisible auction model of Du and Zhu (2012).

5.1 A Double-Auction Model with Interdependent Values

As in Section 4, n ≥ 2 dealers participate in the double auction, which permits both buy

and sell orders. For simplicity, we study in this section an one-stage double auction in

which dealers submit limit orders. Modeling only limit orders is without loss of generality

because physical settlement requests are market orders and can be modeled as limit orders

with extreme prices. And in contrast with Section 4, we allow heterogeneity in dealers’

information about the value of defaulted bonds. This information heterogeneity is necessary

for price discovery.

Specifically, each dealer i receives a signal, si ∈ [0, 1], which is observed by dealer i only.
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Given the profile of signals (s1, . . . , sn), dealer i values the defaulted bond at a weighted

average of all signals:

vi = αsi + β
∑
j 6=i

sj, (20)

where α and β are positive constants that, without loss of generality, sum up to one:

α + (n− 1)β = 1.

Thus, dealers have interdependent values, and price discovery would depend on how the

market-clearing price in the double auction aggregates information contained in the profile

of signals (s1, . . . , sn). Potentially different weights α and β introduce a private component

into the valuation and generates trades. We emphasize that vi is unobservable to dealer i

because other dealers’ signals {sj}j 6=i are unobservable to dealer i.

In addition to receiving a private signal, each dealer i holds a private inventory zi of

defaulted bonds and a private CDS position Qi before the auction. The total inventory,

Z =
∑n

i=1 zi, is common knowledge. For example, the total supply of defaulted bonds of a

firm is often public information. Inventories {zi} matter in the price-discovery model of this

section because dealers face uncertainties regarding their valuations {vi}. In the settings of

Section 3 and Section 4, inventories do not matter because valuations there are commonly

known to be E(v).

Finally, bidder i’s utility after acquiring qi unit of the defaulted bonds at the price of p is

U(qi, p; vi, zi, Qi) = vizi + (vi − p)qi + (1− p)Qi −
1

2
λ(qi + zi)

2, (21)

where λ > 0 is a commonly known constant. The last term −1
2
λ(qi + zi)

2 captures funding

costs, risk aversion or other frictions that make it increasingly costly for dealers to hold

larger positions in the defaulted bonds. This quadratic cost is also used by Vives (2011) and
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Rostek and Weretka (2012) in models of auctions and trading. As before, the second term

(vi − p)qi on the right-hand side of (21) captures the profits of trading the bonds, and the

third term (1−p)Qi captures the net payments on the CDS contracts. Because dealer i does

not observe his valuation vi before the auction, the value of his existing bond positions, vizi,

also enters his utility function.

5.2 An Ex Post Equilibrium

Now we proceed to the equilibrium analysis of the double auction. We denote by xi(p; si, zi, Qi)

bidder i’s demand schedule. At a potential market-clearing price of p, dealer i who has a

signal of si, an inventory of zi, and a CDS position of Qi is willing to buy xi(p; si, zi, Qi)

units of the defaulted bonds. As before, a negative xi(p; si, zi, Qi) represents sell orders. The

market-clearing price p∗ is determined by

n∑
i=1

xi(p
∗; si, zi, Qi) = 0, (22)

where for ease of notation we suppress the dependence of p∗ on {si}ni=1, {zi}ni=1, and {Qi}ni=1.

Our object is to find an ex post equilibrium. In an ex post equilibrium, a dealer’s strategy,

which only depends on his private information (si, zi, Qi), is optimal even if he observes other

dealers’ private information, which consists of {sj}j 6=i, {zj}j 6=i, and {Qj}j 6=i. Thus, an ex

post equilibrium is a Bayesian Nash equilibrium given any joint probability distribution of

signals, inventories, and CDS positions. We now characterize an ex post equilibrium, in

which the equilibrium price aggregates private information from all dealers.

Proposition 5. Suppose that nα > 2. In the double auction with interdependent values,

private inventories, and private CDS positions, there exists an ex post equilibrium in which
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dealer i submits the demand schedule

xi(p; si, zi, Qi) =
nα− 2

λ(n− 1)
(si − p)−

nα− 2

nα− 1
zi +

(1− α)(nα− 2)

(n− 1)(nα− 1)
Z − 1

nα− 1
Qi, (23)

and the equilibrium price is

p∗ =
1

n

n∑
i=1

si −
λ

n
Z. (24)

Moreover, if n > 3 this is the unique ex post equilibrium.

Proof. See Appendix A.

The equilibrium demand schedule (23) confirms our results in Section 3 that the bidding

aggressiveness of a dealer depends on his CDS position. As suggested by the term − 1
nα−1Qi

in (23), CDS sellers (with negative Qi) send more aggressive buy orders (or less aggressive

sell orders) because they benefit from a higher final price p∗. Conversely, CDS buyers (with

positive Qi) send more aggressive sell orders (or less aggressive buy orders) because they

benefit from a lower final price. Since the net supply of CDS is zero, the incentives of CDS

buyers and CDS sellers to affect the price offset each other, and the equilibrium price p∗

does not depend on {Qi}ni=1. Moreover, we see that more aggressive buy orders are sent by

dealers with higher signals and dealers with higher existing bond inventories.

The equilibrium of Proposition 5 also reveals that the equilibrium price (24) aggregates

diverse information from the dealers. The equilibrium price p∗ is equal to the average signal,∑n
i=1 si/n, adjusted for the average marginal holding cost, −λ

n
Z. This ex post equilibrium

price (24) coincides with the competitive equilibrium price if there is no private information

(that is, when signals, inventories, and CDS positions are all commonly known). To see this,

recall that the competitive equilibrium price, pc, is equal to the marginal valuation of each
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bidder at the competitive equilibrium allocation, {qci}ni=1. That is,

pc = vi − λ(zi + qci ).

Averaging the above equation across all the dealers, we have

pc =
1

n

n∑
i=1

vi −
λ

n

(
n∑
i=1

zi +
n∑
i=1

qci

)
=

1

n

n∑
i=1

si −
λ

n
Z = p∗.

In addition to revealing the bidding strategies of dealers and the associated price behavior,

the equilibrium in Proposition 5 has a couple of desirable properties in itself. First, because

it is ex post optimal, the equilibrium is robust to distribution assumptions of the signals,

the inventories, and the CDS positions, as well as implementation details of the double

auction. In particular, the equilibrium does not rely on the normal distribution that is used

extensively in existing trading models, such as Grossman (1976) and Kyle (1985), among

many others. Nor does the ex post equilibrium depends on the transparency of the auction,

namely whether the demand schedules {xi} are observable. Second, because the ex post

optimality is difficult to satisfy, it serves as a natural and powerful equilibrium selection

criterion. It is particular useful for uniform-price auctions of divisible assets, which in many

cases admit a continuum of Bayesian Nash equilibria (Wilson 1979). In the price-discovery

model of this section, the ex post optimality implies uniqueness of the equilibrium for n > 3.

Additional theories and properties of ex post equilibria are developed in Du and Zhu (2012).

6 Testing Bidding Behavior in CDS Auction Data

In this section we test our theory of bidding behavior in CDS auction data. Our empirical

strategy is to use the first-stage physical settlement requests to infer the directions of dealers’

CDS positions, and then test whether, as the theory predicts, CDS sellers (resp. CDS buyers)
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are more aggressive buyers (resp. sellers) in the second stage.

6.1 Data

We use data from 87 credit events (bankruptcy, failure to pay, and restructuring, etc.) from

2006 to 2010. Because some credit events, such as the defaults of Fannie Mae and Freddie

Mac, involve multiple classes of debt, we have a total of 94 auctions. For each auction we

observe

• Dealers’ first-stage quotes, which determine the initial market midpoint.

• First-stage physical settlement requests, which form the open interest.

• Second-stage limit orders, which clear the open interest and determine the final price.

We emphasize that these auction data are based on dealers, who bid for both themselves

and their clients. For brevity, however, we will refer to “dealers and their clients” simply as

“dealers,” keeping in mind that dealers’ bids and clients’ bids are not separately observable.

Table 1 shows the number of CDS auctions by type of the underlying debt, year, currency,

and open interest. About two-thirds of the auctions are on CDS, and about one-third are on

loan CDS. The most recent three years account for the vast majority of defaults, with the

year 2009 accounting for more than a half of the total. About two-thirds of the auctions are

in U.S. dollars, and the remaining majority are in euros. Finally, about 70% of the auctions

have open interests to sell, and the rest, with the exception of seven auctions, have open

interests to buy.

Table 2 summarizes the final price and open interests of the auctions. In this calculation,

we exclude the seven auctions in which the second stage had no limit orders. The average

final price of all auctions is 37 per 100 face value. Overall, the final price of the auction is

close to the price cap or floor determined by the first stage, with a median difference of 2

point per 100 face value.
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Table 1: Credit Event Auctions by Types

Type Year Currency Open Interest
CDS Senior 53 2006 2 USD 62 Sell 67
CDS Subordinate 10 2007 1 EUR 25 Buy 20
CDS Senior/Sub 1 2008 16 JPY 3 Zero 7
Loan CDS (LCDS) 22 2009 59 GBP 4
European LCDS 8 2010 16
Total 94 Total 94 Total 94 Total 94

Table 2: Summary Statistics of Credit Event Auctions

Mean Std. Dev. Median
Final Price 37.28 33.22 23.94
| Final Price − Price Cap/Floor | 3.01 3.84 2.00
Sell Open Interest 254.92 633.95 84.71
Buy Open Interest 140.78 192.90 51.00

Prices are per 100 face value, and open interests are in million USD. When calculating the difference

between the final price and the price cap or floor, we exclude the seven auctions in which the second

stage had no limit orders. All other summary statistics are calculated from all 94 auctions.

In the remainder of the section, we test predictions of our theory on bidding aggressive-

ness. Table 3 provides a glossary of the variables we use. In all regressions, we assume

that the errors are uncorrelated with the right-hand side variables so that the estimates are

consistent.

6.2 Physical Requests and the Aggressiveness of Limit Orders

Prediction 1. If the open interest is to sell, then in the second stage, dealers with physical

buy requests bid more aggressively than do dealers with physical sell requests. Conversely, if

the open interest is to buy, then in the second stage, dealers with physical sell requests bid

more aggressively than do dealers with physical buy requests.

The rationale for this prediction comes directly from our model: a dealer who has sub-
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Table 3: Variables Used in Empirical Analysis of Section 6

Variable Description
AvgPi,t Average price of filled limit orders in the second stage
FinalPt Final auction price
FracOIi,t Fraction of open interest won by dealer i in auction t
Oppositei,t Dummy variable that takes the value 1 if dealer i’s physical

settlement request is opposite in direction to the open interest,
and is otherwise 0

FracReqi,t Dealer i’s signed physical settlement request as a fraction of the
sum of unsigned physical settlement requests from all dealers

OIt Signed open interest. A positive OIt represents a buy open in-
terest, and a negative OIt represents a sell open interest

di Dealer dummy
quarterq(t) Quarter dummy

An auction is denoted by t, and a dealer is denoted by i.

mitted a physical buy request in the first stage is more likely to be a CDS seller, or represent

customers who are CDS sellers on average. Thus, in the case of an open interest to sell, this

dealer, as well as his customers, would aggressively bid in order to increase the final price in

the second stage. On the other hand, a dealer who has submitted a physical sell request in

the first stage is more likely to be a net CDS buyer; in the case of a buy open interest, he

would aggressively bid in order to decrease the final price. We note that dealer aggregation

of customer orders introduce noises into observed physical requests and limit orders.

To test Prediction 1, we use two measures of bidding aggressiveness for each dealer: (i)

the average price of the limit orders that are filled, and (ii) the fraction of open interest won

by the dealer.

6.2.1 Average Price of Filled Limit Orders

Our first proxy of aggressiveness in bidding is the average price AvgPi,t of filled limit orders

for dealer i in auction t. By definition, the average price AvgPi,t of filled limit orders must

be above the final price FinalPt in the case of a sell open interest and must be below the
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final price FinalPt in the case of a buy open interest. The absolute difference | log(AvgPi,t)−

log(FinalPt)| is an indication of the aggressiveness of the limit orders. The more aggressive

are dealer i’s limit orders, the larger is | log(AvgPi,t)− log(FinalPt)|. Consequently, we run

the regression

| log(AvgPi,t)− log(FinalPt)| = α + γOppositei,t + β FracReqi,t · (− sign(OIt))

+ di + quarterq(t) + εi,t. (25)

Variable Oppositei,t is a dummy that takes the value 1 if dealer i’s physical settlement request

is opposite in direction to the open interest and is otherwise the value 0. Our theory predicts

that a dealer on the opposite side of the open interest bids more aggressively, and we expect

the coefficient γ to be positive. We use control variable FracReqi,t, defined as dealer i’s

signed physical settlement request as a fraction of the total physical requests (sum of the

unsigned buy requests and sell requests). A negative (resp., positive) FracReqi,t indicates

a physical sell (resp., buy) request from dealer i in auction t. We multiply FracReqi,t by

the negative open interest, − sign(OIt), so that a dealer i with physical settlement request

opposite (resp., same) in direction to the open interest always has a positive (resp., negative)

FracReqi,t·(− sign(OIt)). We also control for dealer dummy di and quarter dummy quarterq(t).

We consider four variants of regression (25), with (1) no fixed effect, (2) only dealer fixed

effect, (3) only quarter fixed effect, and (4) both dealer and quarter fixed effects. Table 4

summarizes the results of regression (25). As the model predicts, the coefficient γ on the

dummy Oppositei,t is significantly positive for all four specifications. Table 4 reveals that

dealers whose physical requests are opposite in direction to the open interest are willing to

pay an average price that is approximately 5% further from the final auction price, compared

with dealers whose physical requests are on the same side as the open interest. That is, on

average, CDS sellers are more aggressive buyers, and CDS buyers are more aggressive sellers.
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Conditioning on the direction of the physical requests, however, the size of the physical

request does not significantly correlate with the average price of filled limit orders. In fact,

the lack of statistical significance of FracReqi,t · (− sign(OIt)) is not inconsistent with our

model. For example, in Example 1 of Section 3.3, all filled limit buy orders have the same

price of 1, even though CDS sellers may have different physical requests.

Table 4: Estimation Results of Regression (25), with Dependent Variable | log(AvgPi,t) −
log(FinalPt)|

(1) (2) (3) (4)
Oppositei,t 0.043∗ 0.048∗ 0.061∗∗ 0.071∗∗

(0.034) (0.034) (0.036) (0.034)
FracReqi,t · (− sign(OIt)) -0.032 -0.061 -0.037 −0.071∗

(0.048) (0.051) (0.047) (0.05)
Constant 0.121∗∗∗ 0.115∗∗∗ 0.036 0.045

(0.023) (0.03) (0.028) (0.037)
Dealer FE No Yes No Yes
Quarter FE No No Yes Yes
N 611 611 611 611
R2(%) 0.4 6 8.7 13.5

Robust standard errors in parentheses are clustered by auctions. Statistical significance at 10%,

5%, and 1% levels are, in accordance with one-tailed tests, denoted by ∗, ∗∗, and ∗∗∗, respectively.

We drop dealer i in auction t if dealer i won zero amount of the open interest in auction t.

6.2.2 Shares of Open Interest Won

Our second proxy of aggressiveness in bidding is the share of open interests won by dealers.

Naturally, a dealer who wins a larger fraction of the open interest is considered to be a more

aggressive bidder. Thus, we run the regression

FracOIi,t = α + γOppositei,t + β FracReqi,t · (− sign(OIt))

+ di + quarterq(t) + εi,t, (26)
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where FracOIi,t is the unsigned fraction of open interests won by dealer i in auction t. Other

right-hand side variables in (26) are the same as those in the regression (25). Our theory

predicts that the coefficient γ is positive.

Table 5 summarizes the results of regression (26). Without the dealer fixed effect (in the

first and third columns), dealers with physical requests opposite to the open interest win

about 3% more of the open interest than do dealers with physical requests on the same side as

the open interest. After introducing the dealer fixed effect (the second and fourth columns),

however, the estimated γ shrinks in magnitude by about a half and becomes statistically

insignificant. This result suggests that certain dealers (and their customers) persistently sit

on one side of the CDS market and also obtain larger shares of the open interests. As in

regression (25), the coefficient for FracReqi,t ·(− sign(OIt)) is not statistically significant after

conditioning on the direction of the physical requests.10

Table 5: Estimation Results of Regression (26), with Dependent Variable FracOIi,t.

(1) (2) (3) (4)
Oppositei,t 0.029∗∗ 0.016 0.031∗∗ 0.017

(0.016) (0.016) (0.016) (0.017)
FracReqi,t · (− sign(OIt)) -0.038 -0.013 -0.035 -0.012

(0.036) (0.037) (0.036) (0.038)
Constant 0.077∗∗∗ 0.119∗∗∗ 0.079∗∗∗ 0.11∗∗∗

(0.003) (0.023) (0.004) (0.024)
Dealer FE No Yes No Yes
Quarter FE No No Yes Yes
N 1039 1039 1039 1039
R2(%) 0.4 5.8 0.6 5.9

Robust standard errors in parentheses are clustered by auctions. Statistical significance at 10%,

5%, and 1% levels are, in accordance with one-tailed tests, denoted by ∗, ∗∗, and ∗∗∗, respectively.

10Using a method similar to that in Example 1 of Section 3.3, one can construct a second-stage equilibrium
in which all dealers who win positive shares of the open interest win equal shares of the open interest.
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7 Discussion: Price Caps, Frictions, and Bond Prices

So far, our model of CDS auctions does not have price caps or floors. In practice, price caps

and floors are imposed. Although price caps and floors could sometimes limit price biases,

they may not always work. For example, given an open interest to sell, if the price cap, pcap,

is set below E(v), then the final auction price p∗ = pcap, which is too low. If pcap ≥ E(v), then

our model predicts that E(v) ≤ p∗ ≤ pcap. That is, the final price is too high. Therefore, for

the final auction price to be unbiased, the price cap has to be exactly right, which is unlikely

to obtain in practice because dealers typically face uncertainty regarding the recovery value v.

Moreover, the existence of manipulative bidding and price bias in a simpler market (without

caps and floors) calls into question whether the current design of CDS auctions can deliver

fair prices in more sophisticated markets.

The price caps and floors can also obscure the empirical relations between E(v) and p∗.

For example, the expected final auction price, given an open interest to sell, is

E(p∗ |R < 0) = P [pcap ≥ E(v)] · E [p∗ |E(v) ≤ p∗ ≤ pcap, R < 0]

+ P [pcap < E(v)] · E[pcap | pcap < E(v)]. (27)

Given (27), it is not clear whether, ex ante, E(p∗ |R < 0) is higher or lower than E(v).

This inference is made more difficult by the multiplicity of equilibria in the second stage

of the auction. A similar ambiguity applies to the case where R > 0 and a price floor

is imposed. Thus, predicting the relations between E(v) and p∗ requires, at a minimum,

a model of dealers’ quotes in the first stage. Under the current CDS auction mechanism,

dealers’ quoting strategies are important but separate from our main point of manipulation

bidding incentives. Under a double auction, dealers’ quotes would be less important because

price caps and floors would be nonessential.

The empirical relation between CDS auction prices and bond prices has been the focus of
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existing studies on CDS auctions. For example, Helwege, Maurer, Sarkar, and Wang (2009)

find that CDS auction prices appear to be close to bond prices near the auction dates. More

recently, Chernov, Gorbenko, and Makarov (2012) and Gupta and Sundaram (2011) find

that bond prices tend to be higher than CDS auction prices before and after the auction if

there is an open interest to sell.

Several factors may potentially explain this bond price pattern. First, risk-averse in-

vestors could demand a risk premium for buying the bonds in the auction and produce an

auction price that is lower than bond transaction prices after the auction. Second, to the

extent that investors have limited risk budgets to absorb shocks in the open interests, the

final auction price can reflect investors’ capital constraints in addition to their estimates

of the fair recovery values of defaulted bonds. Such “capital mobility” friction can cause

sharp price reactions to demand and supply shocks and subsequent reversals (Duffie 2010).

Third, as indicated by (27), the auction prices would be lower than bond prices if the deal-

ers’ quotes and associated price caps are set too low. Low quotes can occur in equilibrium

because dealers’ quotes enter the second stage as limit orders, and dealers could demand

a risk premium as investors do. Fourth, Chernov, Gorbenko, and Makarov (2012) suggest

that, if some aggressive bidders (e.g. CDS sellers) are forbidden from buying bonds, then the

remaining bidders may bid strategically as in Wilson (1979) and lead to too low an auction

price. All four potential explanations rely on frictions and are separate from manipulative

bidding incentives. As we illustrate in Section 3.5 and Section 5, manipulative bidding incen-

tives also exist in the presence of frictions such as risk aversion, asymmetric information, and

inventory cost. Therefore, we view our results as complementary to the empirical evidence

on bond prices, and the relation between bond prices and auction prices in the time-series

does not necessarily confirm or contradict our theoretical or empirical analysis.

In addition to these four factors that affect bond prices, three measurement issues make it

challenging to approximate the fair recovery values from bond transaction data. One issue is
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the cheapest-to-deliver (CTD) option—the option of CDS buyers to deliver the cheapest bond

for physical settlements.11 Because rational CDS buyers would deliver the cheapest bonds

available, the fair auction price should reflect the volume-weighted average price (VWAP)

of delivered bonds, not all bonds. A proper measure of the average price of delivered bonds

requires, at a minimum, detailed data on which bonds are delivered for physical settlement

and the number of times. A second measurement issue is the illiquidity of the corporate

bond markets, as demonstrated by Bessembinder and Maxwell (2008) and Bao, Pan, and

Wang (2011), among others. The third measurement issue is the lack of reliable transaction

data for non-US corporate bonds, structured bonds, and loans. The lack of bond data cuts

the sample size substantially. For example, in our sample of 94 CDS auctions, only 25 have

TRACE data on the corresponding bonds.

8 Conclusion

CDS auctions settle CDS claims after the defaults of firms, loans, and sovereigns. We find

that under the current design of CDS auctions, CDS buyers and sellers have strong incentives

to—and are able to—distort the final auction price, in order to achieve favorable settlement

payouts. The one-sidedness of the second stage of the auction prevents arbitrageurs from

correcting the price bias. Our results suggest that a double auction can correct price biases

and provide effective price discovery regarding the value of defaulted bonds. The predictions

of our model on bidding behavior are broadly consistent with CDS auction data.

11Ammer and Cai (2011) provide evidence that the CTD option is priced in sovereign CDS basis—the
difference in credit qualities that are implied by bond spreads and CDS spreads, respectively. Similarly,
Packer and Zhu (2005) find that CDS spreads on corporate bonds and sovereign bonds tend to be higher if
the CDS contracts allow a broader set of deliverable obligations (i.e., higher CTD option). Longstaff, Mithal,
and Neis (2005) and Pan and Singleton (2008) discuss the potential pricing implications of the CTD option,
although they do not explicitly model it.
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Appendix

A Proofs

A.1 Proof of Proposition 1

We prove the proposition for the case of a sell open interest (R < 0). The case for a buy

open interest is symmetric.

Part (i). Given the demand schedules, xj, 1 ≤ j ≤ n, of all dealers, dealer i’s expected

profit at position Qi is

Πi(Qi) =

∫ 1

0

((xi(p;Qi) + ri)(E(v)− p) +Qi(1− p))
d

dp
(H(p, xi(p;Qi) | Qi)) dp. (28)

Following Wilson (1979), we define H(p, x | Qi) = F
(∑

j 6=i xj(p;Qj) + x ≤ −R | Qi

)
, which

is the probability that the final price is less than or equal to p if dealer i bids x at a price of

p and everyone else bids in accordance with the demand schedule xj( · ;Qj), j 6= i.

Rewriting (28) by integration by parts, we have

Πi(Qi) =(xi(1;Qi) + ri)(E(v)− 1)− ((xi(0;Qi) + ri)E(v) +Qi)H(0, xi(0;Qi) | Qi) (29)

−
∫ 1

0

(−(xi(p;Qi) + ri +Qi) + x′i(p;Qi)(E(v)− p))H(p, xi(p;Qi) | Qi) dp.

Thus, dealer i chooses xi( · ;Qi) in order to maximize (29), subject to

(i) If xi(p;Qi) > 0, then x′i(p;Qi) < 0;

(ii) If xi(p;Qi) = 0, then xi(p
′;Qi) = 0 for any p′ ≥ p.

Let us fix a Bayesian Nash equilibrium {xi}ni=1. Then for every dealer i and position Qi,
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the optimality of xi( · ;Qi) implies that xi( · ;Qi) must satisfy the first-order condition, which

is known as the Euler equation,12 that is,

Hx(p, xi(p;Qi) | Qi)(ri + xi(p;Qi) +Qi) +Hp(p, xi(p;Qi) | Qi)(E(v)− p) = 0, (30)

p ∈ [0, p̄(Qi)),

where p̄(Qi) = inf{p : xi(p;Qi) = 0}, Hx(p, x | Qi) = ∂H
∂x

(p, x | Qi) ≤ 0, and Hp(p, x | Qi) =

∂H
∂p

(p, x | Qi) ≥ 0. Notice that (30) is the direct analogue of the first-order condition in (8),

where Q is common knowledge.

We now show that for any realization of CDS positions Q = {Qi}ni=1, the final price

p∗(Q), given by the equilibrium demand schedules {xi( · ;Qi)}ni=1, is least E(v). For the

sake of contradiction, suppose that a realization Q = {Qi}ni=1 satisfies p∗(Q) > E(v). At

p∗(Q), we have
∑n

i=1 ri + xi(p
∗(Q);Qi) + Qi = 0. Thus, there exists a dealer i for whom

ri + xi(p
∗(Q);Qi) +Qi ≤ 0. Let us fix this dealer i. We will show that dealer i, who knows

only his CDS position Qi but not {Qj}j 6=i, has the incentive to deviate from xi( · ;Qi) by

bidding for more shares at the price p∗(Q). This deviation would contradict the fact that

{xi}ni=1 is a Bayesian Nash equilibrium because in equilibrium dealer i should not want to

change his bid xi(p;Qi) at any price p ∈ [0, 1].

There are two cases. If xi(p
∗(Q);Qi) > 0, then (30) cannot hold for dealer i at p = p∗(Q)

because we have Hp(p
∗(Q), xi(p

∗(Q);Qi) | Qi) > 0. Thus, the first part of (30) is weakly

positive, whereas the second part of (30) is strictly positive (recall that p∗(Q) < E(v)). This

means that dealer i has an incentive to deviate from xi( · ;Qi) by bidding for more shares at

a price of p∗(Q), which contradicts the definition of equilibrium.

The second case involves xi(p
∗(Q);Qi) = 0. Dealer i’s equilibrium demand schedule

12Let L(x, x′, p) = ((x + ri + Qi) − x′(E(v) − p))H(p, x | Qi). Since dealer i maximizes∫ 1

0
L(xi(p;Qi), x

′
i(p;Qi), p) dp by varying xi( · ;Qi), the Euler equation (or the first-order condition for cal-

culus of variation problem) is ∂L
∂x (xi(p;Qi), x

′
i(p;Qi), p)− d

dp

(
∂L
∂x′ (xi(p;Qi), x

′
i(p;Qi), p)

)
= 0 for every p.
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xi( · ;Qi) must satisfy the following necessary conditions for the bounded optimal control

problem (29) (see Kamien and Schwartz 1991, pp. 185-187, for details):

Lx′(xi(p;Qi), x
′
i(p;Qi), p) + λ(p)


= 0 if x′i(p;Qi) < 0,

≥ 0 if x′i(p;Qi) = 0,

(31)

λ′(p) = −Lx(xi(p;Qi), x
′
i(p;Qi), p)

for every p ∈ [0, 1], where

L(x, x′, p) = ((x+ ri +Qi)− x′(E(v)− p))H(p, x | Qi).

We claim that xi(p;Qi) cannot satisfy (31) for some p < E(v), which contradicts the

optimality of xi( · ;Qi). To see this, notice that

d

dp
(Lx′(xi(p;Qi), x

′
i(p;Qi), p) + λ(p)) (32)

=−Hx(p, xi(p;Qi) | Qi)(ri + xi(p;Qi) +Qi)−Hp(p, xi(p;Qi) | Qi)(E(v)− p).

Clearly, (32) is weakly negative when xi(p;Qi) = 0. Since Hp(p, xi(p;Qi) | Qi) > 0 at

p = p∗(Q) < E(v), (32) must be strictly negative in a small neighborhood of p = p∗(Q) (in

which we still have xi(p;Qi) = 0). Thus, if we have

Lx′(xi(p;Qi), x
′
i(p;Qi), p) + λ(p) = 0

for xi(p;Qi) > 0 (recall that x′i(p;Qi) < 0 whenever xi(p;Qi) > 0), then we must have

Lx′(xi(p;Qi), x
′
i(p;Qi), p) + λ(p) < 0
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for some p at which xi(p;Qi) = 0.

Therefore, p∗(Q) < E(v) cannot occur in equilibrium.

For the proofs of part (ii) and (iii), we fix a Bayesian Nash equilibrium {xi}1≤i≤n and a

realization of Q = {Qi}ni=1.

Part (ii). From the previous part we know that p∗(Q) ≥ E(v). For the sake of contradiction,

suppose that dealer i has a nonnegative CDS position Qi ≥ 0 and receives a positive share

xi(p
∗;Qi) > 0. Then we have

Hx(p
∗(Q), xi(p

∗(Q);Qi) | Qi)(ri + xi(p
∗(Q);Qi) +Qi)

+Hp(p
∗(Q), xi(p

∗(Q);Qi) | Qi)(E(v)− p∗(Q)) < 0

because ri + xi(p
∗(Q);Qi) + Qi > 0 and Hx(p

∗(Q), xi(p
∗(Q);Qi) | Qi) < 0. Therefore, by

the reasoning in Part (i), dealer i would deviate by bidding less at price p∗(Q), which is a

contradiction.

Part (iii). Suppose that p∗(Q) = E(v). Then (32) implies that

ri + xi(p
∗(Q);Qi) +Qi = 0,

for every i ∈ S. Summing the above equation over i ∈ S gives

∑
i∈S

ri −R +
∑
i∈S

Qi = −
∑
i∈B

ri −
∑
i∈B

Qi.

Hence ri + Qi = 0 for every i ∈ B, that is, every CDS buyer has submitted a full physical

settlement request.
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A.2 Off-equilibrium strategies of the mixed-strategy equilibrium

in the first stage

In this appendix we specify the off-equilibrium strategies in the mixed-strategy equilibrium

characterized in Section 3.4. Given these off-equilibrium strategies, we verify that dealers do

not wish to deviate from the equilibrium strategy of mixing between ri = 0 and ri = −Qi,

for all i.

Again, we consider dealer 1, a CDS buyer. Suppose that dealer 1 deviates to submitting

r1 ∈ (−Q1, 0), we select the following second-stage equilibrium:

1’. If R < 0, then p∗ = 1, and CDS seller j’s purchase of the open interest is proportional

to |Qj + rj|.

2’. If R > 0, then p∗ = 0. Dealer 1, the deviator, sells

(Q1 + r1) ·
∑

j 6=1 rj∑
j∈B,j 6=1(Qj + rj) +Q1

units of the bonds. It is easy to check that dealer 1’s sale is larger than the proportional

allocation, Q1+r1∑
j∈B(Qj+rj)

R. Intuitively, dealer 1 is “punished” in the second stage by

being forced to sell a larger quantity of bonds at the price 0. Each CDS buyer i 6= 1

who submits a zero physical request sells

Qi + ri∑
j∈B,j 6=1(Qj + rj)

(
R− (Q1 + r1) ·

∑
j 6=1 rj∑

j∈B,j 6=1(Qj + rj) +Q1

)

units of bonds. The explicit construction of a second-stage equilibrium that supports

these allocations can be done using the method in Example 1, and is omitted here.

3’. If R = 0, then p∗ = E(v).

Given the off-equilibrium strategies defined in 1’–3’, dealer 1’s profit for submitting r1 ∈
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(−Q1, 0) is

Q1(1− E(v)) + (Q1 + r1)E

[
−(1− v) + IR>0

(
1−

∑
j 6=1 rj∑

j∈B,j 6=1(Qj + rj) +Q1

v

) ∣∣∣∣∣ r1
]

<Q1(1− E(v)), (33)

where the inequality follows from (13) and the fact that IR>0 is increasing in r1. Thus,

submitting r1 ∈ (−Q1, 0) results in a lower expected profit than submitting r1 = 0 or

r1 = −Qi. This completes the verification that dealer 1 does not deviate from his mixed

strategy.

A.3 Proof of Proposition 2

Without loss of generality, we consider dealer 1, who is a CDS buyer. We denote by j

the number of CDS buyers who submit a full physical request to sell and denote by l the

number of CDS sellers who submit a full physical request to buy. The open interest is

R = (l − j)Q1. Clearly, by submitting r1 = −Q1 and choosing x1 = 0, dealer 1 gets a fixed

profit of Q1(1− E(v)). If dealer 1 submits ri = 0, then there are three possibilities:

1. If l < j, the open interest is to sell (i.e. R < 0), which happens with probability

k∑
l=0

k−1∑
j=l+1

(
k − 1

j

)
qjB(1− qB)k−1−j

(
k

l

)
qlS(1− qS)k−l. (34)

In this case, we select a second-stage equilibrium in which p∗ = 1. By Proposition 1,

dealer 1 receives zero open interest.

2. If l > j, the open interest is to buy (i.e. R > 0), which happens with probability

k∑
l=0

l−1∑
j=0

(
k − 1

j

)
qjB(1− qB)k−1−j

(
k

l

)
qlS(1− qS)k−l. (35)
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In this case, we select a second-stage equilibrium in which p∗ = 0, and the (k− j) CDS

buyers with zero physical request (including dealer 1) evenly divide the open interest.

One can show that this allocation and price can be supported in equilibrium in the

second stage.

3. If l = j, then the open interest is zero, which happens with probability

k−1∑
j=0

(
k − 1

j

)
qjB(1− qB)k−1−j

(
k

j

)
qjS(1− qS)k−j. (36)

In this case, we set p∗ = E(v).

Therefore, dealer 1’s expected profit from submitting r1 = 0 is

Q1(1− E(v)) +
k∑
l=0

l−1∑
j=0

(
k − 1

j

)
qjB(1− qB)k−1−j

(
k

l

)
qlS(1− qS)k−l

(
Q1 −

l − j
k − j

Q1

)
E(v)

+
k∑
l=0

k−1∑
j=l+1

(
k − 1

j

)
qjB(1− qB)k−1−j

(
k

l

)
qlS(1− qS)k−lQ1(E(v)− 1). (37)

For dealer 1 to be indifferent between r1 = −Q1 and r1 = 0, we must have (14). By

symmetry, (14) ensures that all CDS buyers are indifferent between setting ri = −Qi and

ri = 0.

By a symmetric argument, CDS sellers are indifferent between setting ri = −Qi and

ri = 0 if and only if

k∑
l=0

l−1∑
j=0

(
k − 1

j

)
qjS(1− qS)k−1−j

(
k

l

)
qlB(1− qB)k−l

k − l
k − j

(1− E(v)) (38)

=
k∑
l=0

k−1∑
j=l+1

(
k − 1

j

)
qjS(1− qS)k−1−j

(
k

l

)
qlB(1− qB)k−lE(v).
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We can rewrite the left-hand side of the indifference condition of CDS buyers, equa-

tion (14), as:

k∑
l=0

l−1∑
j=0

(
k − 1

j

)
qjB(1− qB)k−1−j

(
k

l

)
qlS(1− qS)k−l

k − l
k − j

E(v)

=
1− qS
1− qB

k−1∑
l=0

l−1∑
j=0

(
k

j

)
qjB(1− qB)k−j

(
k − 1

l

)
qlS(1− qS)k−1−lE(v)

and the right-hand side of (14) as:

k∑
l=0

k−1∑
j=l+1

(
k − 1

j

)
qjB(1− qB)k−1−j

(
k

l

)
qlS(1− qS)k−l(1− E(v))

=
1− qS
1− qB

k−1∑
l=0

k∑
j=l+1

(
k

j

)
qjB(1− qB)k−j

(
k − 1

l

)
qlS(1− qS)k−1−l

k − j
k − l

(1− E(v)).

Therefore, (14) is equivalent to (38), and we only need to solve (14) to find a solution (qB, qS).

By the previous argument, (14) can be written as

1− qS
1− qB

·
∑k−1

l=0

∑l−1
j=0

(
k
j

)
qjB(1− qB)k−j

(
k−1
l

)
qlS(1− qS)k−1−l∑k

l=0

∑k−1
j=l+1

(
k−1
j

)
qjB(1− qB)k−1−j

(
k
l

)
qlS(1− qS)k−l

=
1− E(v)

E(v)
. (39)

We set qS = 1− qB. The left-hand side of (39) tends to ∞ as qB tends to 0, and tends to 0

as qB tends to 1. Therefore, by the Intermediate Value Theorem, there exists a solution to

(14) that satisfies qB ∈ (0, 1) and qS = 1− qB.

The solution to (14) ensures that every dealer is indifferent between ri = 0 and ri = −Qi.

The off-equilibrium strategies are the same as those in the general case in page 42 and ensure

that a dealer does not have any incentive to submit a physical request strictly between 0

and −Qi. Therefore, we have a mixed-strategy equilibrium of the two-stage auction.
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A.4 Proof of Proposition 5

We conjecture a symmetric demand schedule xi(p; si, zi, Qi), i ∈ {1, . . . , n}. Each dealer i

chooses an optimal strategy given that all other dealers use this conjectured strategy profile

{xj}j 6=i. For a fixed profile of signals (s1, . . . , sn), inventories (z1, . . . , zn), and CDS positions

(Q1, . . . , Qn), the ex post profit of dealer i at the price p is

Πi(p) ≡ vizi + (vi − p)

(
−
∑
j 6=i

xj(p)

)
+ (1− p)Qi −

1

2
λ

(
zi −

∑
j 6=i

xj(p)

)
, (40)

where we have suppressed in xj the conditional variables sj, zj, and Qj, and have used the

fact that at the price p bidder i gets −
∑

j 6=i xj(p) units of bonds.

We can see from (40) that dealer i effectively chooses the optimal price p, again for fixed

{sj}nj=1, {zj}nj=1, and {Qj}nj=1. Taking the first-order condition of (40) at the market-clearing

price of p∗, we have

0 = Π′i(p
∗) = −(xi(p

∗) +Qi) +

(
αsi + β

∑
j 6=i

sj − p∗ − λ(xi(p
∗) + zi)

)(
−
∑
j 6=i

∂xj(p
∗)

∂p

)
.

(41)

Finding an ex post equilibrium boils down to finding a solution to (41), in which xi(p) does

not depend on {sj}j 6=i, {zj}j 6=i, and {Qj}j 6=i.

We conjecture a linear demand schedule

xi(p; si, zi, Qi) = asi − bp+ dzi + eZ + fQi,

where a, b, d, e, and f are constants. Under the conjectured linear strategy, for all j 6= i,

the signal sj of dealer j can be rewritten, in equilibrium, as

sj =
1

a
(xj(p

∗) + bp∗ − dzj − eZ − fQj) .
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Using the facts that
∑

j 6=i xj(p
∗) = −xi(p∗),

∑
j 6=i zj = Z − zi, and

∑
j 6=iQj = −Qi, we have

∑
j 6=i

sj =
1

a
(−xi(p∗) + (n− 1)bp∗ − d(Z − zi)− (n− 1)eZ + fQi) .

Thus, the first order condition (41) can be rewritten as

0 =− (xi(p
∗) +Qi) + (n− 1)b ·

[
αsi − p∗ − λ(xi(p

∗) + zi)

+ β
1

a
(−xi(p∗) + (n− 1)bp∗ − d(Z − zi)− (n− 1)eZ + fQi)

]
. (42)

We observe that (42) implies that xi(p
∗) is a linear function of si, p

∗, zi, Z, and Qi. Matching

the coefficients of (42) and those of xi(p
∗) = asi − bp∗ + dzi + eZ + fQi, we solve

a = b =
nα− 2

λ(n− 1)
, d = −nα− 2

nα− 1
, e = −nα− 2

nα− 1
· 1− α
n− 1

, f = − 1

nα− 1
.

Finally, the second-order condition Π′′i (p
∗) = −nb(1− α), which is nonpositive if and only if

nα > 2. This completes the construction of the equilibrium. Uniqueness of the equilibrium

follows from the argument in Du and Zhu (2012) and is omitted here.
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