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Abstract

The events of 2008–9 disrupted volatility derivatives markets and

caused the single-name variance swap market to dry up completely; it

has never recovered. This paper introduces the simple variance swap,

a more robust relative of the variance swap that can be priced and

hedged even if the underlying asset’s price can jump, and constructs

SVIX, an index based on simple variance swaps that measures market

volatility. SVIX is consistently lower than VIX in the time series, which

rules out the possibility that the market return and stochastic discount

factor are conditionally lognormal. The SVIX index points to an equity

premium that—in contrast to the prevailing view in the literature—is

extraordinarily volatile and that spiked dramatically at the height of

the recent crisis.
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In recent years, a large market in volatility derivatives has developed. An

emblem of this market, the VIX index, is often described in the financial press

as “the fear index”; its construction is based on theoretical results on the

pricing of variance swaps. These derivatives permit investors and dealers to

hedge and to speculate in volatility itself. They also play an informational role

by providing evidence about perceptions of future volatility. Unfortunately,

the variance swap market experienced turmoil as the stock market dropped

sharply during the credit crisis of 2008–9. The single-name variance swap

market was particularly severely affected: it collapsed, and has not recovered.

To explain why, I review the standard theory of variance swap pricing and

hedging in Section 1. The fundamental problem is that there is no known way

to replicate the payoff of a variance swap if the underlying asset’s price can

jump. This problem applies with particular force to individual stocks, which

are more susceptible to jumps than indices are. The presence of jumps also

invalidates the conventional interpretation of the VIX index, so I provide a

more general interpretation.

In Section 2, I define and analyze the simple variance swap contract. Simple

variance swaps are simple in two senses. First, they are simple to price and

hedge: in particular, they can be hedged in the presence of jumps. Second, they

measure the risk-neutral variance of simple returns. Simple variance swaps are

also robust to several potential concerns regarding practical implementation.

Perhaps most important, I show that my hedging and pricing results also hold,

to very high accuracy, if monitoring and hedging occurs at discrete points in

time, rather than continuously; this is, of course, the case that applies in

practice. There is no corresponding result for variance swaps.

Just as VIX is based on the strike of a variance swap, one can consider an

index, SVIX, that is based on the strike of a simple variance swap. In Section 3,

I construct the time series of SVIX from January 1996 to January 2012 using

S&P 500 index option price data from OptionMetrics. VIX is higher than

SVIX throughout the sample, and the gap between the two—an index of non-

lognormality—spikes at times of market stress. In any conditionally lognormal

model VIX would be lower than SVIX, so this is model-free evidence that we

do not live in a conditionally lognormal world.

Section 4 connects the SVIX index to the equity premium. I exploit an
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identity that relates the equity premium to risk-neutral variance and show,

under a weak assumption (the negative correlation condition), that SVIX pro-

vides a lower bound for the forward-looking equity premium. This lower bound

has striking properties. Although it averages about 5% over the sample pe-

riod, it varies dramatically, and at fairly high frequency. It implies that at

the height of the 2008–9 crisis, the one-month equity premium was at least

55.0% (annualized), and that the one-year equity premium was at least 21.5%.

Again, I address various issues regarding practical implementation, and show

that the lower bound is conservative: it would be even higher if option prices

were perfectly observable at all strikes.

Related literature. The literature on variance swaps (Carr and Madan

(1998), Demeterfi et al. (1999)) is based on papers by Breeden and Litzenberger

(1978) and Neuberger (1990, 1994). Bakshi, Kapadia and Madan (2003) and

Neuberger (2011) show how to use option prices to measure the higher risk-

neutral moments of log returns. Lee (2010a, 2010b) provides a brief summary

of volatility derivative pricing in the absence of jumps. Carr and Lee (2009)

provide an excellent survey of the state of the art in the area.

Carr and Corso (2001) and Bondarenko (2007) have proposed different ways

around the problem of hedging variance swaps in the presence of jumps. In

both cases, the approach requires the underlying asset to be a futures contract.

Bollerslev, Tauchen and Zhou (2009), Drechsler and Yaron (2011), and

Bekaert and Engstrom (2011) relate variance risk premia to equity premia in

the context of specific equilibrium models. This paper provides a reason to

expect that such results should hold more generally.

Notation. The current date is time 0, and the terminal time horizon is T .

Throughout the paper, expectations, variances, and so on, are conditional on

current information. Asterisks indicate expectations and variances calculated

with respect to the risk-neutral measure. There is an underlying asset whose

spot price at time t is St and whose forward price to time t—which is known at

time 0—is F0,t. The time-0 price of a European call option on the underlying

asset, expiring at time t, with strike K, is call0,t(K), and the price of the

corresponding put option is put0,t(K).

Assumptions. I assume throughout the paper that there is no arbitrage,

that there are no transaction costs or short sales constraints, and that there
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Assumption VS VIX SVS SVIX

A1 Arbitrary strikes • • ◦ •

A2 No dividends • • ◦ •

A3 Constant interest rate • •

A4 Continuous trading • ◦

A5 No jumps •

Table 1: A bullet point (•) indicates that an assumption is required for results

on variance swaps (VS), simple variance swaps (SVS), VIX, or SVIX. A hollow

bullet point (◦) indicates that an assumption can be partially relaxed.

is no counterparty default. Table 1 summarizes other assumptions required in

various sections of the paper.

A1 European puts and calls on the underlying asset can be traded with

expiry date T and arbitrary strikes.

A2 The underlying asset does not pay dividends.

A3 The continuously-compounded interest rate is constant, at r.

A4 The underlying asset and the bond can be traded continuously in time.

A5 The underlying asset’s price follows an Itô process dSt = rSt dt+σtSt dZt

under the risk-neutral measure.

All five assumptions are required to price and hedge variance swaps. As-

sumption A5 can be dropped entirely for simple variance swaps, which can

be priced and hedged in the presence of jumps, and A1, A2 and A4 can be

relaxed. Results 2 and 4 on the VIX and SVIX indexes only require A1–A2.

Subsequent results are subject to assumptions discussed further below.
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1 Variance swaps

A variance swap is an agreement to exchange(
log

S∆

S0

)2

+

(
log

S2∆

S∆

)2

+ · · ·+
(

log
ST
ST−∆

)2

(1)

for some fixed “strike” Ṽ at time T . The market convention is to set Ṽ so

that no money needs to change hands at initiation of the trade:

Ṽ = E∗
[(

log
S∆

S0

)2

+

(
log

S2∆

S∆

)2

+ · · ·+
(

log
ST
ST−∆

)2
]
. (2)

The following result, which is due to Carr and Madan (1998) and Demeterfi,

Derman, Kamal, and Zou (1999), building on an idea of Neuberger (1994),

shows how to price a variance swap in the ∆ → 0 limit—that is, how to

compute the expectation on the right-hand side of (2). From now on, Ṽ will

always refer to the variance swap strike in this limiting case.

Result 1 (Pricing and hedging a variance swap in the ∆ → 0 limit). Under

Assumptions A1–A5, the strike on a variance swap is

Ṽ = 2erT

{∫ F0,T

0

1

K2
put0,T (K) dK +

∫ ∞
F0,T

1

K2
call0,T (K) dK

}
, (3)

which has the interpretation

Ṽ = E∗
[∫ T

0

σ2
t dt

]
. (4)

The variance swap can be hedged by holding

(i) a static position in (2/K2) dK puts expiring at time T with strike K, for

each K ≤ F0,T ,

(ii) a static position in (2/K2) dK calls expiring at time T with strike K,

for each K ≥ F0,T , and

(iii) a dynamic position in 2(F0,t/St − 1)/F0,T units of the underlying asset

at time t,
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financed by borrowing.

Sketch proof. In the ∆→ 0 limit, the expectation (2) converges to1

Ṽ = E∗
[∫ T

0

(d logSt)
2

]
.

Neuberger (1994) observed that, by Itô’s lemma and Assumption A5, d logSt =

(r− 1
2
σ2
t )dt+ σt dZt under the risk-neutral measure, so (d logSt)

2 = σ2
t dt, and

Ṽ = E∗
[∫ T

0

σ2
t dt

]
= 2E∗

[∫ T

0

1

St
dSt −

∫ T

0

d logSt

]
= 2rT − 2 E∗ log

ST
S0

. (5)

This shows that the strike on a variance swap is determined by pricing a

notional contract that pays, at time T , the logarithm of the underlying asset’s

simple return RT = ST/S0. Carr and Madan (1998) and Demeterfi et al. (1999)

then showed how to use the approach of Breeden and Litzenberger (1978) to

find the price of this contract, Plog, in terms of the prices of European call and

put options on the underlying asset:

Plog ≡ e−rT E∗ logRT = rTe−rT−
∫ F0,T

0

1

K2
put0,T (K) dK−

∫ ∞
F0,T

1

K2
call0,T (K) dK.

(6)

Substituting (6) back into (5), we have the result.

This result is often referred to as “model-free”, since it allows the underly-

ing asset’s price to follow any Itô process. But Assumption A5 is strong, and

it failed badly during the financial crisis of 2008–9. As Carr and Lee (2009)

write, “Dealers learned the hard way that the standard theory for pricing and

hedging variance swaps is not nearly as model-free as previously supposed . . . .

In particular, sharp moves in the underlying highlighted exposures to cubed

and higher-order daily returns . . . . This issue was particularly acute for single

names, as the options are not as liquid and the most extreme moves are big-

ger. As a result, the market for single-name variance swaps has evaporated in

2009.” Nor has it recovered subsequently.

1Jarrow et al. (2010) provide a rigorous analysis.
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1.1 The VIX index

Before turning to simple variance swaps, however, we pause to explore the

properties of the VIX index, which is calculated based on option prices using

an annualized and discretized version of (3), where the underlying asset is

the S&P 500 index, and is generally interpreted as a measure of risk-neutral

variance in the sense of (4). Working with the idealized version of VIX (i.e. not

discretizing), we have

VIX2 ≡ 2erT

T

{∫ F0,T

0

1

K2
put0,T (K) dK +

∫ ∞
F0,T

1

K2
call0,T (K) dK

}
. (7)

Bollerslev, Tauchen and Zhou (2009) and Drechsler and Yaron (2011) use

the VIX index (squared) to proxy for the risk-neutral expectation of the

quadratic variation of log returns (the quantity on the right-hand side of equa-

tion (2)). In the the presence of jumps, however, the relationship between

VIX and quadratic variation breaks down. To measure risk-neutral expected

quadratic variation, one needs to observe the strikes on index variance swaps.

Aı̈t-Sahalia, Karaman and Mancini (2012) do so, obtaining over-the-counter

data, and document a large gap between index variance swap strikes and VIX-

type indices (squared) at all horizons: on the order of 2% in volatility units,

compared to an average volatility level around 20%.

To summarize, if Assumptions A1–A5 held, VIX2 would correspond to the

strike on a variance swap, and would have the interpretation (4). But since

jumps matter, VIX2 does not correspond to the fair strike on a variance swap,

Ṽ ; the replicating portfolio provided in Result 1 does not replicate the variance

swap payoff; and neither Ṽ nor VIX2 has the interpretation (4).

From now on, therefore, we will view (7) as a definition, not as a state-

ment about variance swap pricing. The next result, which is valid even if the

underlying asset’s price can jump, shows that VIX measures the risk-neutral

entropy of the simple return on the S&P 500 index. The entropy operator

L∗(·) provides a measure of the variability of a positive random variable. Like

variance it is nonnegative by Jensen’s inequality, and like variance it mea-

sures variability by the extent to which a concave function of an expectation

of a random variable exceeds an expectation of a concave function of a ran-

dom variable. Entropy makes appearances elsewhere in the finance literature:
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see, for example, Alvarez and Jermann (2005), Backus, Chernov and Martin

(2011), and Backus, Chernov and Zin (2013).

Result 2 (What does VIX measure?). Under Assumptions A1–A2, VIX mea-

sures the risk-neutral entropy of the simple return:

VIX2 =
2

T
L∗(RT ), (8)

where the entropy L∗(X) ≡ logE∗X − E∗ logX. If the simple return RT is

lognormal, then

VIX2 =
1

T
var∗ logRT ≈

1

T
var∗RT , (9)

where the approximation is accurate over short time horizons. But, in general,

with jumps and/or time-varying volatility, VIX depends on all of the (annual-

ized, risk-neutral) cumulants of log returns,

VIX2 =
∞∑
n=2

2κ∗n
n!

= κ∗2 +
κ∗3
3

+
κ∗4
12

+
κ∗5
60

+ · · · , (10)

where κ∗n ≡ 1
T
κ̃∗n, and κ̃∗n is the nth cumulant of logRT . (Thus κ̃∗1 = E∗ logRT ;

κ̃∗2 = var∗ logRT ; κ̃∗3 is the risk-neutral skewness of logRT , multiplied by

(κ̃∗2)3/2; κ̃∗4 is the risk-neutral excess kurtosis, multiplied by (κ̃∗2)2; and so on.)

Proof. Equation (8) follows from the definition of VIX2 and (6), together with

the fact that E∗RT = erT . (The interest rate r is now interpreted as the

continuously-compounded yield on a T -period zero-coupon bond.)

Equation (9) follows from (8) because logE∗RT = E∗ logRT + 1
2

var∗ logRT

if RT is lognormal. For the approximation, write µ = E∗ logRT and σ2 =

var∗ logRT ; over short time horizons, var∗RT = e2µ
(
e2σ2 − eσ2

)
= e2µσ2 +

O(σ4) ≈ σ2 = var∗ logRT .

To derive (10), we introduce the cumulant-generating function κ∗(θ) =

logE∗
[
eθ·logRT

]
, which can be expanded as a power series in θ:

κ∗(θ) =
∞∑
n=1

κ̃∗nθ
n

n!
,

where κ̃∗n is the nth risk-neutral cumulant of logRT . The definition of entropy

implies that L∗(RT ) = κ∗(1)−κ∗′(0), from which (10) follows after annualizing
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the cumulants: κ∗n ≡ 1
T
κ̃∗n. For Normally distributed random variables, all

cumulants above the variance are zero so skewness, excess kurtosis, and so on,

drop out in the lognormal case.

2 Simple variance swaps

Since variance swaps cannot be hedged at times of jumps, market participants

have had to impose caps on their payoffs. These caps—which have become,

since 2008, the market convention in index variance swaps as well as single-

name variance swaps—limit the maximum possible payoff on a variance swap,

but further complicate the pricing and interpretation of the contract. A fun-

damental problem with the definition of a conventional variance swap can

be seen very easily: if the underlying asset—an individual stock, say—goes

bankrupt, so that St hits zero at some point before expiry T , then the payoff

(1) is infinite.

These considerations motivate the following definition. A simple variance

swap is an agreement to exchange(
S∆ − S0

F0,0

)2

+

(
S2∆ − S∆

F0,∆

)2

+ · · ·+
(
ST − ST−∆

F0,T−∆

)2

(11)

for a pre-arranged strike V at time T . (Recall that F0,t is the forward price of

the underlying asset to time t, which is known at time 0. If option prices

are observable at all strikes, the forward price is the strike, K, at which

call0,t(K) = put0,t(K). In the special case in which the asset is non-dividend-

paying, F0,t equals S0e
rt, so the denominators are geometrically increasing;

and if the interest rate is also zero, then the denominators are all equal.)

Figure 7 in the appendix compares observed realized values of the payoffs

(1) and (11) for variance swaps and simple variance swaps on the S&P 500

index, using T = 1 month and ∆ = 1 day. The two payoffs are generally

similar, but the variance swap payoff (1) is larger if the S&P 500 index drops

sharply over the trade horizon, and smaller if the S&P 500 index rises sharply.

As before, V is chosen so that no money changes hands at initiation. The

choice to put forward prices in the denominators is important: below we will

see that this choice leads to a huge simplification of the formula for the strike V ,
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and of the associated hedging strategy, in the limit as the period length ∆ goes

to zero. In an idealized frictionless market, this simplification of the hedging

strategy would merely be a matter of analytical convenience; in practice, with

trade costs, it acquires far more importance.

The following result shows how to price a simple variance swap (i.e. how to

choose V so that no money need change hands initially) in the ∆ → 0 limit.

From now on, I write V for the fair strike on a simple variance swap in this

limiting case, and write V (∆) when the case of ∆ > 0 is considered.

The result allows for the underlying asset to pay dividends continuously

at rate δSt per unit time. (Dividends should be interpreted broadly: if the

underlying asset is a foreign currency then δ corresponds to the foreign interest

rate. Later in this section, and in the appendix, I consider other ways of

modelling dividend payouts.) Given this assumption, F0,t = S0e
(r−δ)t.

Result 3 (Pricing and hedging a simple variance swap in the ∆ → 0 limit).

Under Assumptions A1, A3 and A4, the strike on a simple variance swap is

V =
2erT

F 2
0,T

{∫ F0,T

0

put0,T (K) dK +

∫ ∞
F0,T

call0,T (K) dK

}
, (12)

and the payoff on a simple variance swap can be replicated by holding

(i) a static position in (2/F 2
0,T ) dK puts expiring at time T with strike K,

for each K ≤ F0,T ,

(ii) a static position in (2/F 2
0,T ) dK calls expiring at time T with strike K,

for each K ≥ F0,T , and

(iii) a dynamic position in 2e−δ(T−t)(1−St/F0,t)/F0,T units of the underlying

asset at time t,

financed by borrowing.

Proof. The derivation of (12) divides into two steps.

Step 1. The absence of arbitrage implies that there exists a sequence of

strictly positive stochastic discount factors M∆,M2∆, . . . such that a payoff

Xj∆ at time j∆ has price Ei∆
[
M(i+1)∆M(i+2)∆ · · ·Mj∆Xj∆

]
at time i∆. The
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subscript on the expectation operator indicates that it is conditional on time-

i∆ information. I abbreviate M(j∆) ≡M∆M2∆ · · ·Mj∆.

V is chosen so that the swap has zero initial value, i.e.,

E

[
M(T )

{(
S∆ − S0

F0,0

)2

+ · · ·+
(
ST − ST−∆

F0,T−∆

)2

− V

}]
= 0. (13)

We have

E[M(T )(Si∆ − S(i−1)∆)2] = e−r(T−i∆) E[M(i∆)(Si∆ − S(i−1)∆)2]

= e−r(T−i∆)
{
E[M(i∆)S

2
i∆]− (2e−δ∆ − e−r∆)E[M((i−1)∆)S

2
(i−1)∆]

}
,

using (i) the law of iterated expectations; (ii) the fact that the interest rate

r is constant, so that E(i−1)∆Mi∆ = e−r∆; and (iii) the fact that if dividends

are continuously reinvested in the underlying asset, then an investment of

e−δ∆S(i−1)∆ at time (i − 1)∆ is worth Si∆ at time i∆, which implies that

E(i−1)∆Mi∆Si∆ = e−δ∆S(i−1)∆. If we define Π(i) to be the time-0 price of a

claim to S2
i , paid at time i, then

E
[
M(T )

(
Si∆ − S(i−1)∆

)2
]

= e−r(T−i∆)
[
Π(i∆)−

(
2− e−(r−δ)∆) e−δ∆Π((i− 1)∆)

]
.

Substituting this into (13), we find that

V (∆) =

T/∆∑
i=1

eri∆

F 2
0,(i−1)∆

[
Π(i∆)− (2− e−(r−δ)∆)e−δ∆Π((i− 1)∆)

]
. (14)

It remains to calculate Π(t). But note that2

S2
t = 2

∫ ∞
0

max {0, St −K} dK.

The right-hand side is the time-t payoff on an equal-weighted portfolio of

European call options of all strikes, so a static no-arbitrage argument implies

that

Π(t) = 2

∫ ∞
0

call0,t(K) dK. (15)

2Darrell Duffie suggested this approach. A previous draft derived (15) via Breeden–

Litzenberger (1978) logic and integration by parts: Π(t) =
∫∞

0
K2 call′′0,t(K) dK =

2
∫∞

0
call0,t(K) dK. The latter approach is less neat, but has the advantage of being me-

chanical: it does not rely on a “trick”.
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To express Π(t) in terms of out-of-the-money options, we can use the put-call

parity relationship call0,t(K) = put0,t(K) + e−rt(F0,t −K) to write this as

Π(t) = 2

∫ F0,t

0

put0,t(K) dK + 2

∫ ∞
F0,t

call0,t(K) dK + e−rtF 2
0,t . (16)

Step 2. Observe that (14) can be rewritten

V (∆) =

T/∆∑
i=1

{
eri∆

F 2
0,(i−1)∆

[
P (i∆)− (2− e−(r−δ)∆)e−δ∆P ((i− 1)∆)

]}
+
T

∆

(
e(r−δ)∆ − 1

)2
,

where

P (t) ≡ 2

{∫ F0,t

0

put0,t(K) dK +

∫ ∞
F0,t

call0,t(K) dK

}
.

For 0 < j < T/∆, the coefficient on P (j∆) in this equation is

erj∆

F 2
0,(j−1)∆

− er(j+1)∆

F 2
0,j∆

(2− e−(r−δ)∆)e−δ∆ =
erj∆

F 2
0,j∆

(
e(r−δ)∆ − 1

)2
.

(It may be helpful to note that definition (11) was originally found by viewing

the normalizing constants F0,j∆, for j = 0, . . . T/∆, as arbitrary, and choosing

them so that the above equation would hold.) We can therefore rewrite

V (∆) =
erT

F 2
0,T−∆

P (T ) +

T/∆−1∑
j=1

erj∆

F 2
0,j∆

(
e(r−δ)∆ − 1

)2
P (j∆)︸ ︷︷ ︸

O(1/∆) terms of size O(∆2)

+
T

∆

(
e(r−δ)∆ − 1

)2
.

(17)

The second term on the right-hand side is a sum of T/∆ − 1 terms, each of

which has size on the order of ∆2; all in all, the sum is O(∆). The third term

on the right-hand side is also O(∆), so both tend to zero as ∆→ 0. The first

term tends to erTP (T )/F 2
0,T , as required.

The above argument implicitly supplies the dynamic trading strategy that

replicates the payoff on a simple variance swap. Appendix A describes the

strategy in detail.

The derivation of the pricing result (12) has two main components. The

first is the exact expression (14), which applies for fixed ∆ > 0. It shows

that the strike on a simple variance swap is dictated by the prices of options
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across all strikes and the whole range of expiry times ∆, 2∆, . . . , T . But,

correspondingly, the hedge portfolio requires holding portfolios of options of

each of these maturities. Although this is not a serious issue if ∆ is large

relative to T , it raises the concern that hedging a simple variance swap may

be extremely costly in practice if ∆ is very small relative to T .

Fortunately, the second component shows that this concern is misplaced:

by choosing forward prices as the normalizing weights in the definition (11),

both the pricing formula (14) and the hedging portfolio simplify nicely in the

limit as ∆ → 0. In principle, we could have put any other constants known

at time 0 in the denominators of the fractions in (11). Had we done so, we

would have to face the unappealing prospect of a hedging portfolio requiring

positions in options of all maturities between 0 and T . Using forward prices

lets us sidestep this problem, meaning that the hedge calls only for a single

static portfolio of options expiring at time T , and equally weighted by strike.

The dynamic position in the underlying can be thought of as a delta-hedge:

if, say, the underlying’s price at time t happens to exceed F0,t = S0e
(r−δ)t, then

the replicating portfolio is short the underlying in order to offset the effects of

increasing delta as calls go in-the-money and puts go increasingly out-of-the-

money.

There is a telling contrast between the hedging portfolios of variance swaps

and simple variance swaps. The hedge portfolio for a simple variance swap

holds equal amounts of options of all different strikes, while variance swaps

require increasingly large positions in puts with increasingly low strikes, re-

flecting the fact that variance swaps are more sensitive than simple variance

swaps to downward jumps in the price of the underlying asset.3

3Another recent innovation, the gamma swap, is closely related to a variance swap. At

time T , a gamma swap pays

S∆

S0

(
log

S∆

S0

)2

+
S2∆

S0

(
log

S2∆

S∆

)2

+ · · ·+ ST
S0

(
log

ST
ST−∆

)2

− Vγ .

Under the Itô process assumption, gamma swaps can be replicated in a similar way to

variance swaps; see Lee (2010a). In contrast with the hedge portfolio for a standard variance

swap, which holds options with strikes K in amounts proportional to 1/K2, the hedge for

a gamma swap holds portfolios of options with strikes K in amounts proportional to 1/K.

Simple variance swaps, which put equal weight on options of all strikes, are the next member

of the sequence. But simple variance swaps are distinguished from the other two by the fact
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Figure 1: The payout and hedge error on a simple variance swap (SVS), and

on a variance swap (VS), for a particular underlying price path.

Figure 1 makes this point graphically. It shows the required payoff and as-

sociated hedge portfolio payoff over a particular sample path for the underlying

asset, for a 3-month simple variance swap (Figures 1a, 1b, and 1c) and for a

3-month variance swap (Figures 1d, 1e, and 1f). The underlying price follows

the same path in each case. The middle panels compare the required payout

on the simple variance swap and variance swap to the payout of the hedge

portfolio in each case.4 In Panel 1b, only one line is visible: the simple vari-

ance swap is essentially perfectly hedged. In contrast, Panel 1e shows that the

hedge portfolio (dashed line) substantially underperforms the required payout

on the variance swap (solid line) due to the downward jump in the price of

that they can be priced and hedged in the presence of jumps.
4For times t prior to expiry, I compute the required payout and hedge portfolio perfor-

mance on the assumption that volatility goes to zero after time t, i.e. that the underlying

asset price grows deterministically at the riskless rate between time t and time T . This

example uses a discretization both in time and in the gap between strikes of options in the

hedging portfolio. In the absence of this discretization, the hedge error on a simple variance

swap would be exactly zero, as shown in Result 3.
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the underlying. Panels 1c and 1f plot the difference between required payout

and hedge portfolio performance in each case. The replicating portfolio for the

variance swap suffers a large hedging error; in the case of the simple variance

swap, the corresponding error is more than three orders of magnitude smaller.

Robustness. The above results rely on assumptions that are standard in

the variance swap literature. It turns out, however, that simple variance swaps

are robust to relaxing these assumptions in various ways.

First, what if sampling and trading occurs at discrete intervals ∆ > 0,

rather than continuously? Equations (14) and (12) provide the fair strike

on a simple variance swap in each case, and in Appendix B.1, I derive an

analytic bound that shows that the gap between the two is extremely small

if sampling is at daily, weekly or monthly intervals. I am not aware of any

correspondingly general results in the variance swap literature—in fact, on the

contrary, Broadie and Jain (2008) show, in the context of specific parametric

models with jumps, that the fair strike on a variance swap can be significantly

different depending whether sampling is continuous or discrete.

Second, what if deep-out-of-the-money options cannot be traded? This

issue—which prevents perfect replication of variance swaps and simple vari-

ance swaps—cannot be entirely avoided so I show, in Appendix B.2, how to

introduce an adjustment term to the contractually agreed payoff (11) on a

simple variance swap if it is a significant concern. The resulting payoff can

be replicated with the limited range of strikes that is tradable. I also show

that in the case of S&P 500 index variance swaps, this adjustment term would

equalled zero on every day in my sample period; in other words, even without

the correction term, no problem would have materialized in sample. This indi-

cates that jumps, rather than nontradability of deep-out-of-the-money options,

were the fundamental problem for the index variance swap market during the

recent crisis.

Third, one might worry about the effect of different dividend payout poli-

cies. But note that Result 3 continues to hold if the asset makes unanticipated

dividend payouts. Consider an extreme case in which the simple variance swap

is priced and hedged, at time zero, as though δ = 0; but immediately after

inception of the trade, at time t = ∆, the underlying asset is suddenly liqui-

dated via an extraordinary dividend, causing its (ex-dividend) price to equal
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0 from time ∆ onwards. The payout that must be made by the counterparty

who is short variance is given by equation (11): in this extreme example, it

will equal 1. Meanwhile, the hedge portfolio given in the above result will

generate a positive payoff due to the put options going in-the-money. (The

dynamic position will have zero payoff: it was neither long nor short at time

0, and subsequently the asset’s price never moved from zero.) Since ST = 0,

the total payoff will be

2

F 2
0,T

∫ F0,T

0

max {0, K − ST} dK =
2

F 2
0,T

∫ F0,T

0

K dK = 1.

In other words, the strategy perfectly replicates the desired payoff. This applies

more generally: once the strike V is set and the replicating portfolio is in place,

it does not matter why the price path moves around subsequently, whether

due to the payment of unanticipated dividends or not.

This logic does not apply if dividends are anticipated. In Appendix B.3, I

show how to modify the definition of the payoff (11) if, instead of paying divi-

dends at rate δSt, the asset pays dividends whose sizes and timing are known

at time 0. Having done so, the results above go through almost unchanged.

The most challenging case is the fully general one, in which dividends

are potentially anticipated, but of unknown size and timing. There is an

elegant solution in this case too, assuming dividend-adjusted options can be

traded: these are options on a claim to the underlying asset with dividends

reinvested. Such options have recently started to trade on an over-the-counter

basis, though they are relatively illiquid at present.5 I will call the underlying

with dividends reinvested the dividend-adjusted underlying. Then we can price

and hedge a simple variance swap on the dividend-adjusted underlying directly

from Result 3 simply by reinterpreting the inputs. The price St corresponds

to the price of the dividend-adjusted underlying (so S0 is the spot price of the

underlying asset); the instantaneous dividend yield δ = 0; F0,t is the forward

price of the dividend-adjusted underlying, which equals S0e
rt for all t by a

static no-arbitrage argument; and put0,T (K) and call0,T (K) are the prices of

dividend-adjusted options expiring at time T .

5I am grateful to Jack Busta for conversations on this point.

16



2.1 The SVIX index

From now on, the return RT will always be the return on the S&P 500 index

(“the market”). By analogy with VIX, we can define an index, SVIX, that is

based on the annualized strike (12) of a simple variance swap:

SVIX2 ≡ 2erT

T · F 2
0,T

{∫ F0,T

0

put0,T (K) dK +

∫ ∞
F0,T

call0,T (K) dK

}
. (18)

In the remainder of the main body of the paper I assume that the underlying

asset does not pay dividends, δ = 0, to facilitate comparison with VIX. I also

write Rf,T = erT whenever it is convenient to do so.

Result 4 (What does SVIX measure?). Under Assumptions A1–A2, SVIX

measures the risk-neutral variance of the simple return:

SVIX2 =
1

T
var∗ (RT/Rf,T ) . (19)

Proof. (As in Result 2, the interest rate r is to be interpreted as the continuously-

compounded yield on a T -period zero-coupon bond.) We have

var∗RT = E∗
[(

ST
S0

)2
]
−
[
E∗
(
ST
S0

)]2

=
erTΠ(T )

S2
0

− e2rT .

(Since this equation follows from a static no-arbitrage argument, the link be-

tween SVIX and risk-neutral variance is unambiguously pinned down; this

relationship applies whenever assumptions A1 and A2 hold, independent of

whether or not the market is complete, for example.) From (16), this implies

var∗RT =
2erT

S2
0

{∫ F0,T

0

put0,T (K) dK +

∫ ∞
F0,T

call0,T (K) dK

}
,

from which (19) follows.

If it seems surprising that the riskless rate enters equation (19), but not the

corresponding equation (8) for the VIX index, then note that because entropy

is invariant under scalings, L∗(RT ) = L∗(RT/Rf,T ).

Equation (19) has a nice graphical implication that is illustrated in Figure

2, which plots call and put prices against strike. Calls and puts have equal
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Figure 2: If the prices of call and put options expiring at time T are as shown,

then the annualized risk-neutral variance of the underlying asset’s simple re-

turn equals the shaded area under the curves multiplied by 2erT/(TS2
0).

value when the strike equals the forward price, so the two lines intersect at

K = F0,T . The annualized risk-neutral variance is proportional to the shaded

area under the two curves. SVIX is the square root of this quantity, so measures

risk-neutral volatility.

3 Comparing VIX and SVIX

If the VIX index measures entropy, and the SVIX index measures variance,

which is a better measure of return variability? The answer is that both are of

interest.6 Entropy is more sensitive to the left tail of the return distribution,

while variance is more sensitive to the right tail, as can be seen by compar-

ing the entropy measure (7), which loads more strongly on out-of-the-money

puts, with the variance measure (18), which loads equally on options of all

strikes. I show below that the difference between VIX and SVIX is a measure

of nonlognormality; and we will see in Section 4 that SVIX is a quantity that

emerges naturally when connecting option prices to expected returns. Finally,

note that the characterizations provided by Results 2 and 4 can be read in re-

verse as a way to calculate implied VIX and SVIX indices within equilibrium

models: it is far easier to calculate risk-neutral entropy and variance than it

6Analogously, Hansen and Jagannathan (1991) study the variance of the stochastic dis-

count factor, while Backus, Chernov and Martin (2012) and Backus, Chernov and Zin (2013)

focus on its entropy. See the Online Appendix for further discussion.
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is to compute option prices and then integrate over strikes.

I construct the time series of SVIX using option price data supplied by

OptionMetrics, following the methodology used to construct VIX. Full details

of the procedure are in the Appendix. The underlying asset is the S&P 500

index, and I compute the index for horizons of T = 1, 2, 3, 6, and 12 months.
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Figure 3: Left: Time series of closing prices of VIX (dotted line) and SVIX

(solid line). Right: VIX minus SVIX.

Figures 3a and 3b plot SVIX from January 4, 1996, to January 31, 2012

with T = 1 month. For clarity, all figures show 10-day moving averages.

Figure 3a shows the time series of VIX (dotted line) and SVIX (solid line) at

each day’s close. At the scale of the figure, it is hard to see any difference

between the two, though VIX’s sensitivity to higher cumulants is visible at

some of the peaks. Figure 3b plots VIX minus SVIX. In theory, it is possible

for VIX to be lower than SVIX. Indeed, this would occur if returns RT were

lognormally distributed under the risk-neutral measure, as the next result will

show, so loosely speaking, VIX minus SVIX is an index of nonlognormality.

Unsurprisingly, therefore, the VIX–SVIX spread jumped in the recent crisis

and at other times of market stress.

Result 5. If the SDF MT and return RT are conditionally jointly lognormal,

then SVIX2 = 1
T

(eσ
2
RT − 1) and VIX2 = σ2

R, where σ2
R = 1

T
var logRT .

Proof. In Appendix C.

Since eσ
2
RT − 1 > σ2

RT , VIX is lower than SVIX in any conditionally log-

normal model (and at the monthly or even annual horizon, the two would be
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almost equal). The opposite is true in the data, which is direct, model-free

evidence that at the 1-month horizon, returns and the SDF are not condition-

ally lognormal. Moreover, VIX is higher than SVIX on every single day in my

sample. It is not that nonlognormality only matters at times of crisis; it is a

completely pervasive feature of the data.

Figure 8 in the appendix shows the corresponding plots for 3-month, 6-

month, and 1-year horizons. In each case, VIX has almost invariably been

higher than SVIX.

These results are consistent with the findings of Bollerslev and Todorov

(2011a, 2011b).7 Bollerslev and Todorov require identifying assumptions8 to

draw their conclusions from high-frequency data, however, whereas my con-

clusion is based on a direct comparison of the price of one portfolio of options

to another.

It is worth emphasizing that this evidence is much stronger than the now

familiar observation that histograms of log returns are not (approximately)

Normal, since that leaves open the possibility that log returns are conditionally

Normal (with, for example, time-varying conditional volatility). Figure 3b

excludes that possibility; no model in which the market return and SDF are

conditionally jointly lognormal is consistent with the data.

3.1 VIX and SVIX in equilibrium

Equation (10) has an implication that is surprising at first glance: if returns

are more negatively skewed then, all else equal, VIX will be lower. One might

have expected that negative skewness would drive VIX higher. This logic, of

course, is based on intuition about real-world, not risk-neutral, cumulants; to

assess it, we need to introduce some economics to create a link between the

real-world probabilities and risk-neutral probabilities.

7Several authors find similar results in parametric frameworks: for example, Bates (2000),

Aı̈t-Sahalia et al. (2001), Andersen et al. (2002), Pan (2002), Carr and Wu (2003), Eraker

(2004), Broadie et al. (2009), and Backus et al. (2011).
8Specifically, they make assumptions that link the time-variation of arrival rates of se-

vere disasters to the arrival rates of small disasters, and that restrict the distribution of

extreme jumps. See Assumptions (2.6), (3.6), (A.2), and the assumptions in the statement

of Proposition 1, in Bollerslev and Todorov (2011a).
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We can do so by assuming that there is a marginal investor with utility

function u(·) who is content to hold the market—assumed to be the asset

underlying VIX and SVIX—from to 0 to time T . Such an agent chooses from

the available menu of assets with returns R
(i)
T , i = 1, 2, . . ., and arrives at the

overall portfolio return RT . In other words, he chooses portfolio weights {wi}
to solve the maximization problem

max
{wi}

Eu

(∑
i

wiR
(i)
T

)
subject to

∑
i

wi = 1. (20)

The first-order conditions for this problem imply that u′(RT )/E (RTu
′(RT ))

is a stochastic discount factor. The proof of the next result exploits this fact.

Result 6 (Interpretation of VIX and SVIX). If there is a marginal investor

with power utility and coefficient of relative risk aversion γ, then VIX and

SVIX can be expressed in terms of the annualized real-world cumulants of

logRT :

VIX2 =
∞∑
n=2

(−1)nαnκn , where αn =
2 [(γ − 1)n − γn + nγn−1]

n!
(21)

SVIX2 ≈
∞∑
n=2

(−1)nβnκn , where βn =
(γ − 2)n − 2(γ − 1)n + γn

n!
. (22)

VIX and SVIX load equally on variance: α2 = β2 = 1 for all γ. But VIX

is more sensitively dependent on higher real-world cumulants: if γ ≥ 1, then

we have αn > βn ≥ 0 for n > 2. The approximation in (22) is accurate so

long as the horizon T is sufficiently short (equal to a year or less, say).

Proof. In Appendix C.

Result 6 should not be overemphasized, because it depends on the power

utility assumption. But it confirms the basic intuition discussed above: al-

though VIX is positively related to risk-neutral skewness (and higher odd

risk-neutral cumulants), it is negatively related to their real-world counter-

parts, because αn > 0. The same is true for SVIX, because βn > 0. But

VIX is more sensitively dependent on higher cumulants than SVIX, because

αn > βn.
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4 SVIX and the equity premium

SVIX can be connected to real-world (as opposed to risk-neutral) quantities in

a rather general way. To see how, write MT for the stochastic discount factor

that prices time-T payoffs, and start from an identity:

var∗RT

Rf,T

= E(MTR
2
T )−Rf,T

= ERT −Rf,T + E(MTR
2
T )− ERT

= ERT −Rf,T + cov(MTRT , RT )︸ ︷︷ ︸
≤ 0 if NCC holds

. (23)

This identity connects something that can be measured directly from SVIX

(the risk-neutral variance) to something of interest (the equity premium) plus

a covariance term. It motivates the following definition.

Definition 1 (Negative correlation condition). Given a gross return RT and

stochastic discount factor MT , the negative correlation condition (NCC) holds

if cov (MTRT , RT ) ≤ 0.

The NCC is a convenient and flexible way to restrict the set of stochastic

discount factors under consideration. It would, for example, fail badly in a

risk-neutral economy, that is, if MT were constant; empirically, though, MT

is extremely volatile (Hansen and Jagannathan (1991)). Roughly speaking,

the NCC imposes two requirements: the stochastic discount factor must be

volatile, and it must be negatively correlated with the return RT .9 In partic-

ular, the NCC holds if any of the following conditions holds.

B1 There is a one-period marginal investor who maximizes (20) above, and

whose relative risk aversion γ(x) ≡ −xu′′(x)/u′(x), which need not be

constant, satisfies γ(x) ≥ 1.

B2 There is an intertemporal marginal investor with separable utility who

holds the market, whose value function J can be defined recursively as

9If MT and RT are conditionally lognormal, the NCC is equivalent to the requirement

that − corr(logMT , logRT )σ(logMT ) ≥ σ(logRT ). For an alternative, and closely related,

equivalence under lognormality, see condition B4 and Result 7, below.
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a function of wealth W0,

J
[
W0

]
= max

C0,{wi}
u(C0) + β E J

[
(W0 − C0)

∑
i

wiR
(i)
T

]
s.t.

∑
i

wi = 1,

and whose relative risk aversion Γ(x) ≡ −xJ ′′ [x] /J ′ [x], which need not

be constant, satisfies Γ(x) ≥ 1.

B3 There is an Epstein–Zin (1989) marginal investor who holds the market,

and has a constant consumption-wealth ratio and risk aversion γ ≥ 1.

B4 The SDF and market return are conditionally jointly lognormal, and the

market’s conditional Sharpe ratio exceeds its conditional volatility.

This list is far from exhaustive: one can, for example, adapt B1 or B2 to al-

low for situtations in which the marginal investor earns labor income, or holds

bonds. Nonetheless, together these alternatives cover a reasonably wide range

of models. Condition B1 is conceptually the simplest, but Cochrane (2011)

has argued that it is crucial to allow for intertemporal considerations in such

calculations. Condition B2 handles this case, and makes clear that the coeffi-

cient of relative risk aversion should be computed with respect to wealth, not

with respect to consumption. This is the conventional measure of aversion to

the risk of pure wealth bets. Condition B3 covers (a discrete-time version of)

Wachter’s (2011) time-varying disaster risk model. Condition B4 covers con-

ditionally lognormal models—including, for example, those of Campbell and

Cochrane (1999), Bansal and Yaron (2004), Bansal, Kiku, Shaliastovich and

Yaron (2012) and Campbell, Giglio, Polk and Turley (2012)—for calibrations

that are consistent with the empirical regularity that the conditional Sharpe

ratio of the market is higher than its conditional volatility.

Result 7 (SVIX and the equity premium). If the NCC holds, then

ERT −Rf,T ≥
var∗RT

Rf,T

. (24)

If also assumptions A1–A2 hold, so that Result 4 applies, then SVIX pro-

vides a lower bound on the equity premium:

1

T
E [RT −Rf,T ] ≥ Rf,T · SVIX2. (25)
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If any one of conditions B1–B4 holds, then the NCC holds; and if there is

a marginal investor with log utility who holds the market, then the NCC and

(24) hold with equality.

Proof. Inequality (24) follows from (23). Inequality (25) follows from (24) and

Result 4. If there is a marginal investor with log utility who holds the market,

then MT = 1/RT is an SDF, and hence the NCC and inequality (24) hold

with equality. It remains to show that any one of conditions B1–B4 implies

that the NCC holds; I do so in Appendix C.

Thus SVIX provides a direct measure of the forward-looking expected ex-

cess return on the market under the true, not the risk-neutral, probability

distribution. This is a natural—perhaps the natural—measure of risk.

Result 7 provides a bound in the opposite direction from the Hansen–

Jagannathan (1991) bound,

ERT −Rf,T

σ(RT )
≤ σ(MT )

EMT

,

where σ(·) denotes conditional (real-world) standard deviation. The analogy

between inequality (24) and the Hansen–Jagannathan bound can be brought

out more strongly by rewriting (24) as

ERT −Rf,T

Rf,T

≥
(
σ∗(RT )

E∗RT

)2

.

The Hansen–Jagannathan bound has the advantage of holding very gener-

ally, but the disadvantage that it relates two quantities that are not directly

observable. As a result, time-series averages are typically used in practice to

compute backward-looking Sharpe ratios as a proxy for the true measure of

interest, the forward-looking Sharpe ratio. In contrast, Result 7 has the ad-

vantage of providing a directly observable bound on the equity premium, but

the disadvantage that it relies on the NCC. The lower bound is of particular

interest because, as we will see below, it was strikingly high during the crisis

of 2008–9.

Inequality (25) is reminiscent of an approach taken by Merton (1980), based

on the equation

instantaneous risk premium = γσ2 , (26)
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where γ is a measure of aggregate risk aversion, and σ2 is the instantaneous

variance of the market return. This relationship can be justified if there is a

representative agent with constant relative risk aversion γ.

There are some important differences between the two approaches, how-

ever. First, Merton assumes that the market’s price follows a diffusion, thereby

ruling out the effects of skewness and of higher moments by construction.10 In

contrast, Result 7 makes no assumption about how prices evolve. Related to

this, there is no distinction between risk-neutral and real-world (instantaneous)

variance in a diffusion-based model: the two are identical, by Girsanov’s theo-

rem. Once we move beyond diffusions, however, the appropriate generalization

relates the risk premium to risk-neutral variance.

A second difference is that conditions B1 and B2 do not require that the

marginal investor has constant relative risk aversion, only that the investor’s

risk aversion is never less than 1. This has the advantage of increased generality

but the apparent disadvantage that, other than in the log utility case, Result

7 only provides a lower bound. One might imagine, for example, that in the

CRRA case γ(x) ≡ γ, we could show that 1
T
E [RT −Rf,T ] = γRf,T · SVIX2.

It can be shown, though, that this fails for γ 6= 1. Similarly, one might hope

to show that if γ(x) ≥ γ, then 1
T
E [RT −Rf,T ] ≥ γRf,T ·SVIX2. But this does

not follow either; nor does the corresponding result with the two inequalities

reversed. In every case, higher cumulants can conspire to invalidate the hoped-

for conclusion.

Third, Merton implements (26) using realized historical volatility rather

than by exploiting option price data, though he notes that volatility measures

could be calculated, in principle, “by ‘inverting’ the Black–Scholes option pric-

ing formula”. (Unfortunately—as he also notes—index options were not traded

when he wrote the paper.) However, Black–Scholes implied volatility would

only provide the correct measure of σ if we really lived in a Black–Scholes

(1973) world in which prices followed geometric Brownian motions. The re-

sults of this paper show how to compute the right measure of variance in a

more general environment.

Figure 4a plots the 10-day moving average of Rf,T · SVIX2 measured in

10Amongst others, Rubinstein (1973), Kraus and Litzenberger (1976), and Harvey and

Siddique (2000) emphasize the importance of skewness in portfolio choice.
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Figure 4: The lower bound on the annualized equity premium at different

horizons (in %). The figures show 10-day moving averages. Mid prices in

black; bid prices in red.
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percentage points, at the one-month horizon. As shown in Result 7, this can

be interpreted as a lower bound on the annualized expected equity premium.

The mean of this lower bound over the whole sample is 5.00%—a number close

to typical estimates of the unconditional equity premium. If either condition

B1 or B2 holds, this raises the possibility that the marginal stock market

investor’s relative risk aversion is closer to 1 than is commonly supposed in

the literature. There is considerable time-variation in the lower bound. During

the “Great Moderation” years 2004–2006, the average lower bound was only

1.86%; in contrast, during the recent crisis, the lower bound peaked at 38.7%

on a 10-day moving average basis, and rose as high as 55.0% in the daily data.

Figures 4b and 4c repeat this exercise for the 3-month and 1-year horizons.

Even at the annual horizon there is substantial variation, from a minimum of

1.22% to a maximum of 21.5% in the daily data.

At all horizons, the equity premium hit peaks during the recent crisis,

notably from late 2008 to early 2009 as the credit crisis gathered steam and

the stock market fell, but also around May 2010, coinciding with the beginning

of the European sovereign debt crisis. Other peaks occur during the LTCM

crisis in late 1998; during the days following September 11, 2001; and during

a period in late 2002 when the stock market was hitting new lows following

the end of the dotcom boom. Interestingly, the bound was also relatively high

from late 1998 until the end of 1999; by contrast, forecasts based on market

dividend- and earnings-price ratios incorrectly predicted a low or even negative

equity premium during this period, as noted by Ang and Bekaert (2007) and

Goyal and Welch (2008). The lower bound also has the appealing property

that, by construction, it can never be less than zero. Most important, the out-

of-sample issues emphasized by Goyal and Welch (2008) do not apply here,

since no parameter estimation is required to generate the lower bounds.

To address the concern that the lower bounds shown in Figure 4 are artifi-

cially high due to illiquidity in option markets, the figure also plots the lower

bound calculated from the bid prices on options rather than mid prices. The

resulting line, in red, is almost indistinguishable from the mid-price bound.

The gap between the two is largest in November 2008, but the lower bound

remains extremely high at all horizons.

Table 2 reports the mean, standard deviation, and various quantiles of the

27



horizon mean s.d. min 1% 10% 25% 50% 75% 90% 99% max

1 mo 5.00 4.60 0.83 1.03 1.54 2.44 3.91 5.74 8.98 25.7 55.0

2 mo 5.00 3.99 1.01 1.20 1.65 2.61 4.11 5.91 8.54 23.5 46.1

3 mo 4.96 3.60 1.07 1.29 1.75 2.69 4.24 5.95 8.17 21.4 39.1

6 mo 4.89 2.97 1.30 1.53 1.95 2.88 4.39 6.00 7.69 16.9 29.0

1 yr 4.63 2.43 1.22 1.64 2.07 2.79 4.35 5.71 7.19 13.9 21.5

Table 2: Mean, standard deviation, and quantiles of equity premium bounds

at various horizons (annualized and measured in %).

distribution of the lower bound in the daily data for horizons between 1 month

and 1 year. It is worth emphasizing that although VIX is more positively

skewed and has a higher kurtosis than SVIX, the quantity that enters the

equity premium bound is SVIX squared, which in turn is more skewed and has

a higher kurtosis than VIX.

Consider, finally, a thought experiment. Suppose you find the lower bound

on the equity premium in November 2008 implausibly high. What trade should

you have done to implement this view? You should have sold a portfolio of

options, namely an at-the-money-forward straddle and (equally weighted) out-

of-the-money calls and puts. Such a position means that you end up short

the market if the market rallies and long the market if the market sells off:

essentially, you are taking a contrarian position, providing liquidity to the

market. At the height of the credit crisis, extraordinarily high risk premia

were available for investors who were prepared to take on this position.

Robustness. In practice, the idealized lower bound that emerges from the

theory in the form of an integral (over option prices at all strikes) must be

approximated by a sum (over option prices at observable strikes). In Appendix

B.4, I show that the sums tend to underestimate the integrals; the key to

this result is the well-known fact that option prices are convex functions of

strike. The lower bound on the equity premium is therefore conservative: it

would be even higher if option prices were observable at all strikes. Since

the replacement of integrals by sums occurs throughout the literature, I also

provide a corresponding result for the VIX index.
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5 Conclusion

The theory of pricing and hedging of variance swaps depends on an assumption

that prices follow diffusions, and hence cannot jump. When, in the recent

crisis, prices did jump, the volatility derivatives market experienced turmoil.

Individual stocks tend to jump more dramatically than indices, so the single-

name variance swap market was affected particularly severely. It collapsed,

and has not recovered.

Simple variance swaps are closely related to variance swaps. Unlike vari-

ance swaps, though, they can be priced and hedged even in the presence of

jumps. I define an index, SVIX, that is based on the strike of a simple variance

swap, much as the VIX index is based on the strike of a variance swap. But

the link between SVIX and simple variance swaps holds even in the presence

of jumps—unlike that between VIX and variance swaps.

The VIX and SVIX indices capture two different notions of the variability of

the underlying return—entropy and variance, respectively—and the difference

between the two, an index of non-lognormality, spikes up at times of stress.

In the time series from January 1996 to January 2012, SVIX was always lower

than VIX. This is direct evidence that we do not live in a lognormal world.

The paper concludes by linking the information in option prices to the mar-

ket risk premium. I show that the SVIX index provides a lower bound on the

forward-looking expected equity premium. This result relies on an assumption

(the negative correlation condition) that holds in a range of standard models,

and which captures the fact that the stochastic discount factor is volatile and

negatively correlated with the market return. The bound does not require

any stationarity or ergodicity assumptions, and it does not require statisti-

cal estimation of any parameters—so there are no in-sample/out-of-sample

issues—because the lower bound is drawn directly from observable prices.

The mean lower bound over the full sample, at 5.00% in annualized terms

for returns over a one-month horizon and 4.63% for a one-year horizon, is

reassuringly close to the long-run average realized equity premium. But in

November 2008, the lower bound on the one-year equity premium rose to

21.5%, and the lower bound on the annualized one-month equity premium

climbed to 55.0%. In sharp contrast to the prevailing view in the literature,
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the SVIX index points to an equity premium that is extraordinarily volatile

and that spiked dramatically at the height of the recent crisis.
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A Hedging a simple variance swap

The proof of Result 3 implicitly supplies the dynamic trading strategy that

replicates the payoff on a simple variance swap. Tables 3 and 4 describe the

strategy in detail. Each row of Table 3 indicates a sequence of dollar cashflows

that is attainable by investing in the asset indicated in the leftmost column.

Negative quantities indicated that money must be invested; positive quantities

indicate cash inflows. Thus, for example, the first row indicates a time-0

investment of $e−rT in the riskless bond maturing at time T , which generates

a time-T payoff of $1. The second and third rows indicate a short position

in the underlying asset, held from 0 to ∆ with continuous reinvestment of

dividends, and subsequently rolled into a short bond position. The fourth row

represents a position in a portfolio of call options of all strikes expiring at time

∆, as in equation (15); this portfolio has simple return S2
∆/Π(∆) from time

0 to time ∆. The fifth, sixth, and seventh rows indicate how the proceeds

of this option portfolio are used after time ∆. One part of the proceeds is

immediately invested in the bond until time T ; another part is invested from

∆ to 2∆ in the underlying asset, and subsequently from 2∆ to T in the bond.

The replicating portfolio requires similar positions in options expiring at times

2∆, 3∆, . . . , T − 2∆. These are omitted from Table 3, but the general such

position is indicated in Table 4, together with the subsequent investment in

bonds and underlying that each position requires.

The self-financing nature of the replicating strategy is reflected in the fact

that the total of each of the intermediate columns from time ∆ to time T −∆
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is zero. The last column of Table 3 adds up to the desired payoff,(
S∆ − S0

F0,0

)2

+

(
S2∆ − S∆

F0,∆

)2

+ · · ·+
(
ST − ST−∆

F0,T−∆

)2

− V.

Therefore, the first column must add up to the cost of entering the simple

variance swap. Equating this cost to zero, we find the value of V provided in

equation (14).

The replicating strategy simplifies nicely in the ∆ → 0 limit. The dollar

investment in each of the option portfolios expiring at times ∆, 2∆, . . . , T −∆

goes to zero at rate O(∆2). We must account, however, for the dynami-

cally adjusted position in the underlying, indicated in rows beginning with

a U. As shown in Table 4, this calls for a short position in the underlying

asset of 2e−r(T−(j+1)∆)S2
j∆e
−δ∆/F 2

0,j∆ in dollar terms at time j∆, that is, a

short position of 2e−r(T−(j+1)∆)Sj∆e
−δ∆/F 2

0,j∆ units of the underlying. In the

limit as ∆ → 0, holding j∆ = t constant, this equates to a short position of

2e−r(T−t)St/F
2
0,t units of the underlying asset at time t.

The static position in options expiring at time T , shown in the penul-

timate line of Table 3, does not disappear in the ∆ → 0 limit. We can

think of the option portfolio as a collection of calls of all strikes, as in (15).

It is more natural, though, to use put-call parity to think of the position

as a collection of calls with strikes above F0,T and puts with strikes be-

low F0,T , together with a long position in 2e−δ(T−t)/F0,T units of the un-

derlying asset—after continuous reinvestment of dividends—and a bond po-

sition. Combining this static long position in the underlying with the pre-

viously discussed dynamic position, the overall position at time t is long

2e−δ(T−t)/F0,T−2e−r(T−t)St/F
2
0,t = 2e−δ(T−t)(1−St/F0,t)/F0,T units of the asset

and long out-of-the-money-forward calls and puts, all financed by borrowing.

B Robustness

This section collects the robustness results discussed in Sections 2 and 4.
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asset 0 j∆ (j + 1)∆ T

j∆
−(e(r−δ)∆−1)2Πj∆
er(T−j∆)F 2

0,j∆

(e(r−δ)∆−1)2S2
j∆

er(T−j∆)F 2
0,j∆

B e−r(T−j∆)

[
−S2

j∆

F 2
0,(j−1)∆

− S2
j∆

F 2
0,j∆

]
S2
j∆

F 2
0,(j−1)∆

+
S2
j∆

F 2
0,j∆

U
2S2
j∆e

−δ∆

er(T−(j+1)∆)F 2
0,j∆

−2Sj∆S(j+1)∆

er(T−(j+1)∆)F 2
0,j∆

B
2Sj∆S(j+1)∆

er(T−(j+1)∆)F 2
0,j∆

−2Sj∆S(j+1)∆

F 2
0,j∆

Table 4: Replicating the simple variance swap. The generic position in options

of intermediate maturity, together with the associated trades required after

expiry. In the left column, B indicates a position in the bond, U indicates

a position in the underlying with dividends continuously reinvested, and j∆

indicates a position in options expiring at j∆.

B.1 Pricing and hedging with ∆ > 0

The hedging strategy provided in Tables 3 and 4 perfectly replicates the desired

payoff when ∆ > 0, but requires positions in options at all expiry dates ∆, . . . ,

T −∆. Discretizing the continuous-time strategy provided in the statement of

Result 3 (which is exactly valid in the limit as ∆→ 0) is equivalent to ignoring

all such positions in options with intermediate expiry dates. The cashflows in

these rows contribute a term of size O(∆) at time 0, and terms of size O(∆2)

at dates between 1 and T − ∆. Thus the overall replication error is of size

O(∆), so the limiting strike is also an excellent approximation to the truth for

sampling—and trading—intervals ∆ > 0. The next result makes this formal.

Result 8. For ∆ > 0, the exact simple variance swap strike V (∆), given by

equation (14), is very well approximated by V , given in equation (12):

|V (∆)− V | ≤ T

∆

(
e(r−δ)∆ − 1

)2
(1 + V ) +

∣∣e2(r−δ)∆ − 1
∣∣V . (27)

The error term is tiny in practice: if T = 1, r − δ = 0.02, V = 0.05, then the

right-hand side of (27) is less than 0.00001 with daily sampling (∆ = 1/252),
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less than 0.00005 with weekly sampling (∆ = 1/52), and less than 0.0002 with

monthly sampling (∆ = 1/12).

Proof. Result 3 implies that for j < T/∆,

erj∆P (j∆)

F 2
0,j∆

= lim
∆→0

E∗
j∑
i=1

[
Si∆ − S(i−1)∆

F0,(i−1)∆

]2

≤ lim
∆→0

E∗
T/∆∑
i=1

[
Si∆ − S(i−1)∆

F0,(i−1)∆

]2

=
erTP (T )

F 2
0,T

.

Combining this observation with (17), we find that∣∣∣∣∣V (∆)− erTP (T )

F 2
0,T−∆

∣∣∣∣∣ =

T/∆−1∑
j=1

(
e(r−δ)∆ − 1

)2 erj∆P (j∆)

F 2
0,j∆

+
T

∆

(
e(r−δ)∆ − 1

)2

≤ T

∆

(
e(r−δ)∆ − 1

)2 erTP (T )

F 2
0,T

+
T

∆

(
e(r−δ)∆ − 1

)2
.

Now, by definition of V , we have |erTP (T )/F 2
0,T−∆ − V | =

∣∣e2(r−δ)∆ − 1
∣∣V .

Since |V (∆)−V | ≤ |V (∆)−erTP (T )/F 2
0,T−∆|+ |erTP (T )/F 2

0,T−∆−V |, by the

triangle inequality, the result follows.

B.2 Pricing and hedging when deep-out-of-the-money

strikes are not tradable

Options that are sufficiently deep-out-of-the-money have prices so close to

zero that they are not traded. Thus the idealized replicating portfolio, which

comprises options of all strikes, is not attainable in practice. This issue affects

both conventional variance swaps and simple variance swaps. Fortunately

there is a practical solution to this problem. Suppose that, at time 0, options

with strikes between A and B are tradable; the idealized scenario in which all

strikes are tradable corresponds to A = 0, B = ∞. Then we can define the

modified payoff(
S∆ − S0

F0,0

)2

+

(
S2∆ − S∆

F0,∆

)2

+ · · ·+
(
ST − ST−∆

F0,T−∆

)2

− φ(ST ), (28)
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where the correction term φ(ST ) is zero unless the underlying asset’s price

happens to end up outside the original strike range (A,B):

φ(ST ) =



(
A−ST
F0,T−∆

)2

if ST < A.

0 if A ≤ ST ≤ B.(
ST−B
F0,T−∆

)2

if ST > B.

The modified payoff (28) can be replicated without needing to trade options

with strikes outside the range (A,B), by holding

(i) a static position in 2/F 2
0,T dK puts expiring at time T with strike K, for

each A < K ≤ F0,T ,

(ii) a static position in 2/F 2
0,T dK calls expiring at time T with strike K, for

each F0,T ≤ K < B, and

(iii) a dynamic position in 2e−δ(T−t)(1−St/F0,t)/F0,T units of the underlying

asset at time t,

financed by borrowing. To see this, simply note that the payoff φ(ST ) is

precisely the payoff on the “missing” options with strikes less than A and

greater than B that are not included in the above position.

In the limit as ∆ → 0, the fair strike that should be exchanged for the

payoff (28) at time T is

V̂ ≡ 2erT

F 2
0,T

{∫ F0,T

A

put0,T (K) dK +

∫ B

F0,T

call0,T (K) dK

}
.

To explore how large the adjustment term φ(ST ) is in practice in the case of

the S&P 500 index, I looked at every day in the sample on which OptionMetrics

had data for options expiring in 30 days. On each such day, I recorded the

lowest tradable strike (i.e. the strike of the most deep-out-of-the-money put

option) and the highest tradable strike (i.e. the strike of the most deep-out-

of-the-money call option), together with the subsequently realized level of the

market at expiry time T .
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Figure 5: Left: Upper and lower strike boundaries, A and B (dotted lines) and

subsequent realized level of the market at expiry, ST (solid line). Right: The

distance at expiry from the edge of the strike range, expressed as a percentage

of the terminal level ST .

The results are shown in Figure 5. Over the sample period, the underlying

asset’s price never ended up outside the range of tradable strikes. In other

words, the correction term φ(ST ) was zero in every case: in Figure 5a, the value

of ST at expiry is within the range of strikes that were tradable at initiation

on every day in sample. Figure 5b shows how far the underlying ended from

the closer of the two boundaries, expressing the result as a percentage of ST ;

the graph is always positive, reflecting the fact that the strike boundary was

never crossed over the sample period. The spike in the figure occurred on 21

November, 2008, when the S&P 500 happened to close near the middle of the

strike range that had prevailed 30 days previously; moreover, this occurred

at a time when implied volatilities were very high, so that an extremely wide

range of strikes had been traded. The low point in the figure occurred at the

very beginning of the sample, on January 18, 1996, when the S&P 500 closed

at 608.24. On that day, the highest strike tradable on options expiring in 30

days—on Saturday, February 17, 1996—was 650; in the event, the S&P 500

closed just two points lower, at 647.98, on Friday, February 16.

As is apparent from Figure 5a, the width of the range of tradable strikes

has tended to increase over time. The mean value of the percentage distance

to the edge of the strike range, as illustrated in Figure 5b, is 12.9%; the median

value is 11.9%. In other words, on the median day in sample, the S&P 500
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would have had to move a further 11.9% in the appropriate direction in order

to exit the relevant range of tradable strikes.

B.3 Pricing and hedging if the underlying pays a known

dividend

For simplicity, consider the case in which the asset pays a single dividend

Dk∆ at time k∆ for some k, and no dividends at any other time up to and

including the expiry date, T . The price of a portfolio whose payoff is S2
i at

time i continues to equal Π(i), given by equation 15.

In this section, it will be important to distinguish between F0,t, the forward

price of the dividend-paying asset to time t, and F̃0,t ≡ S0e
rt, the appropriate

normalization for the definition of a simple variance swap in this case. A

standard no-arbitrage argument implies that the forward price is given by

F0,t =


S0e

rt if t < k∆

S0e
rt −Dk∆e

r(t−k∆) if t ≥ k∆

so F0,t and F̃0,t coincide for times t before the payment of the dividend, but

differ thereafter. It turns out that F̃0,t is the appropriate normalization so that

the intermediate option positions are negligibly small, as was the case in the

main text.

The definition of the payoff on the simple variance swap must be modified

to allow for the presence of the dividend. At time T , the counterparties to the

simple variance swap now exchange V for(
S∆ − S0

F̃0,0

)2

+ · · ·+

(
S(k−1)∆ − S(k−2)∆

F̃0,(k−2)∆

)2

+

(
Sk∆ +Dk∆ − S(k−1)∆

F̃0,(k−1)∆

)2

+

+

(
S(k+1)∆ − Sk∆

F̃0,k∆

)2

+ · · ·+

(
ST − ST−∆

F̃0,T−∆

)2

.

(29)

If the stock price happens to track the forward price at all points in time, then

the payoff (29) will be zero in the ∆ → 0 limit, as is the case with variance

swaps and simple variance swaps in the absence of dividends.
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The starting point of the replicating strategy will be to carry out precisely

the trades listed in Tables 3 and 4 with δ set equal to zero (and replacing F0,t

with F̃0,t wherever it occurs in the tables). This replicating strategy generates

the payoff (29) minus V , plus an extra payoff of (Dk∆/F̃0,(k−1)∆)2−2Dk∆(Sk∆+

Dk∆)/F̃ 2
0,(k−1)∆. To offset this extra payoff, two new positions are required: (i)

a short position of e−rT (Dk∆/F̃0,(k−1)∆)2 (measured in dollars) in bonds, and

(ii) a long position of 2Dk∆e
−r(T−k∆)/F̃ 2

0,(k−1)∆ units of the underlying held

until time k∆, then rolled into bonds.

After some algebra (and up to terms of order ∆, as usual) this implies that

the simple variance swap strike is given by

V =
2erT

F̃ 2
0,T

{∫ F0,T

0

put0,T (K) dK +

∫ ∞
F0,T

call0,T (K) dK

}
,

and that the replicating portfolio is equivalent to holding

(i) a static position of 2/F̃ 2
0,T puts expiring at time T with strike K, for each

K ≤ F0,T ,

(ii) a static position of 2/F̃ 2
0,T calls expiring at time T with strike K, for each

K ≥ F0,T , and

(iii) a dynamic position of 2(F0,t−St)/(F̃0,tF̃0,T ) units of the underlying asset

at time t,

financed by borrowing.

B.4 The effect of discretization by strike

The integrals that appear throughout the paper (and throughout the variance

swap literature) are idealizations that cannot be implemented in practice be-

cause one only observes options with discrete strikes over a finite range. Write

Ω0,T (K) for the price of an out-of-the-money(-forward) option with strike K,

that is,

Ω0,T (K) ≡


put0,T (K) if K < F0,T

call0,T (K) if K ≥ F0,T

;
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Figure 6: The effect of discretization. Different panels use different scales.

write K1, . . . , KN for the strikes of observable options; write Kj for the strike

that is nearest to the forward price F0,T ;11 and define ∆Ki ≡ (Ki+1−Ki−1)/2.

Then the idealized integral
∫∞

0
Ω0,T (K) dK is replaced, in practice, by the

observable sum
∑N

i=1 Ω0,T (Ki) ∆Ki. (This is the CBOE’s procedure in calcu-

lating VIX, and I follow it in this paper.) Figure 6a illustrates. The question

is, how well does the sum approximate the integral?

The next result will show that there are two forces pushing in the direction

of underestimation (of the integral by the sum) and one pushing in the direction

of overestimation. But the latter effect is very minor in practice, so one should

think of discretization as leading to underestimation of the integral.

Result 9 (The effect of discretization by strike). Discretizing by strike will

11For simplicity, I assume that strikes are evenly spaced near-the-money, Kj+1 − Kj =

Kj −Kj−1. This is not essential, but it is almost always the case in practice and lets me

economize slightly on notation.
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tend to lead to an underestimate of the idealized value of SVIX2, in that

2erT

T · F 2
0,T

N∑
i=1

Ω0,T (Ki) ∆Ki︸ ︷︷ ︸
discretization

≤ 2erT

T · F 2
0,T

∫ ∞
0

Ω0,T (K) dK︸ ︷︷ ︸
idealized SVIX2

+
(∆Kj)

2

4T · F 2
0,T︸ ︷︷ ︸

very small

.

The same is true for VIX2, in that

2erT

T

N∑
i=1

Ω0,T (Ki)

K2
i

∆Ki︸ ︷︷ ︸
discretization

≤ 2erT

T

∫ ∞
0

Ω0,T (K)

K2
dK︸ ︷︷ ︸

idealized VIX2

+
(∆Kj)

2

4T · F 2
0,T︸ ︷︷ ︸

very small

.

Proof. Non-observability of deep-out-of-the-money options obviously leads to

an underestimation of SVIX2.

Consider, first, the out-of-the-money puts with strikes K1, . . . , Kj−1. The

situation is illustrated in Figure 6b: by convexity of put0,T (K), the light grey

areas that are included (when they should be excluded) are smaller than the

dark grey areas that are excluded (when they should be included). The same

logic applies to the out-of-the-money calls with strikes Kj+1, Kj+2, . . .. Thus

the observable options—excluding the nearest-the-money option—will always

underestimate the part of the integral which they are intended to approximate.

It remains to consider the nearest-the-money option with strike Kj, which

alone can lead to an overestimate. Lemma 1, below, shows that the worst

case is if the strike of the nearest-the-money option happens to be exactly

equal to the forward price F0,T , as in Figure 6c. For an upper bound on the

overestimate in this case we must find an upper bound on the sum of the

approximately triangular areas (x) and (y) that are shown in the figure. We

can do so by replacing the curved lines in the figure by the (dashed) tangents

to put0,T (K) and call0,T (K) at K = F0,T . The areas of the resulting triangles

provide the desired upper bound, by convexity of put0,T (K) and call0,T (K):

we have

area (x) + area (y) ≤ 1

2

(
∆K

2

)2

put′0,T (K)− 1

2

(
∆K

2

)2

call′0,T (K).

But, by put-call parity, put′0,T (K)−call′0,T (K) = e−rT . Thus, the overestimate

due to the at-the-money option is at most

1

2

(
∆K

2

)2

e−rT .
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Since the contributions from out-of-the-money and missing options led to un-

derestimates, the overall overestimate is at most this amount. Finally, since

the definition (18) scales the integral by 2erT/(TF 2
0,T ), the result follows.

The proof of the result for VIX2 follows exactly the same lines. The key

observation is that call0,T (K)/K2 and put0,T (K)/K2 are convex, since they

are each products of positive, monotonic, convex functions.

The maximal overestimate provided by this result is extremely small : for

the S&P 500 index, the interval between strikes near-the-money is ∆Kj = 5.

If, say, the forward price of the S&P 500 index is F0,T = 1000 and we are

considering a monthly horizon, T = 1/12, then the discretization leads to an

overestimate of SVIX2 that is at most 7.5 × 10−5 < 0.0001. By comparison,

the average level of SVIX2 is on the order of 0.05, as shown in Table 2. Since

the non-observability of deep-out-of-the-money options causes underestima-

tion, there is therefore a strong presumption that the sum underestimates the

integral.

It only remains to establish the following lemma, which is used in the proof

of Result 9. The goal is to consider the largest possible overestimate that the

option whose strike is nearest to the forward price, F0,T , can contribute. Figure

6d illustrates. The dotted rectangle in the figure is the contribution if the strike

happens to be equal to F0,T ; I will call this Case 1. The dashed rectangle is the

contribution if the strike equals F0,T − ε, for some ε > 0 (for concreteness—the

case ε < 0 is essentially identical); I will call this Case 2.

Lemma 1. The option with strike closest to the forward overestimates most

in the case in which its strike is equal to the forward.

Proof. The overestimate in Case 1 is greater than that in Case 2 if

area (b)+area (c)+area (e)+area (f) ≥ area (a)+area (b)+area (f)−area (d)

in Figure 6d, or equivalently,

area (c) + area (d) + area (e) ≥ area (a). (30)

But, by convexity of put0,T (K),

area (b) + area (c) ≥ area (a) + area (b),

from which (30) follows. An almost identical argument applies if ε < 0.
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C Proofs for Results 5, 6 and 7

Proof of Result 5. LetRT = eµRT+σR
√
TZR−σ2

RT/2 andMT = e−rT+σM
√
TZM−σ2

MT/2,

where ZR and ZM are Normal random variables with mean zero, variance one,

and correlation ρ. Since EMTRT = 1, we must have µR − r = −ρσMσR.

From (19), SVIX2 = e−2rT

T
[E∗(R2

T )− (E∗RT )2] = 1
T

(
e−rT EMTR

2
T − 1

)
.

Now, using the fact that µR − r = −ρσMσR, we have

EMTR
2
T = E e−rT+σM

√
TZM− 1

2
σ2
MT+2µRT+2σR

√
TZR−σ2

RT

= erT+σ2
RT .

Thus, SVIX2 = 1
T

(eσ
2
RT − 1) as required.

The calculation for VIX is slightly more complicated. Using (8), VIX2 =
2
T

L∗RT = 2
T

[logE∗RT − E∗ logRT ] = 2
T

[
rT − erT EMT logRT

]
. Now,

E [MT logRT ] = E
[
(µRT + σR

√
TZR −

1

2
σ2
RT )e−rT+σM

√
TZM−σ2

MT/2

]
= (µR −

1

2
σ2
R)T · e−rT + σR

√
Te−rT−σ

2
MT/2 E

[
ZRe

σM
√
TZM

]
.

We can write ZR = ρZM +
√

1− ρ2Z, where Z is uncorrelated with ZM and

hence, since they are both Normal, independent of ZM . The expectation in

the above expression then becomes

E
[
ZRe

σM
√
TZM

]
= E

[
(ρZM +

√
1− ρ2Z)eσM

√
TZM

]
= ρE

[
ZMe

σM
√
TZM

]
.

By Stein’s lemma,

E
[
ZMe

σM
√
TZM

]
= E

[
σM
√
TeσM

√
TZM

]
= σM

√
Teσ

2
MT/2.

These results, together with the fact that µR − r = −ρσMσR, imply that

EMT logRT = (µR − 1
2
σ2
R + ρσMσR)Te−rT = (r − 1

2
σ2
R)Te−rT . It follows that

VIX2 = 2
T

[
rT − (r − 1

2
σ2
R)T

]
= σ2

R, as required.

Proof of Result 6. Let κ(θ) = logE
[
eθ·logRT

]
=
∑∞

n=1
κ̃nθn

n!
(the cumulant-

generating function of the real-world cumulants κ̃n), and let κ∗(θ) be the
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corresponding function calculated with respect to risk-neutral probabilities.

The nth derivative of κ∗(θ) at the origin equals the nth risk-neutral cumu-

lant of logRT . In particular the first derivative at the origin equals the mean,

E∗ logRT = κ∗′(0), so equations (8) and (19) relate VIX and SVIX to cumu-

lants via the expressions

VIX2 =
2

T
[κ∗(1)− κ∗′(0)] and SVIX2 =

1

T

[
eκ

∗(2)−2κ∗(1) − 1
]
.

If κ∗(2) − 2κ∗(1) is small (as I will now assume; this will be the case if the

time horizon is a year or less, say), then SVIX2 ≈ 1
T

[κ∗(2)− 2κ∗(1)], so

SVIX2 ≈
∞∑
n=2

(2n − 2)κ∗n
n!

= κ∗2 + κ∗3 +
7κ∗4
12

+
κ∗5
4

+ · · · . (31)

For comparison, Result 6 showed that

VIX2 =
∞∑
n=2

2κ∗n
n!

= κ∗2 +
κ∗3
3

+
κ∗4
12

+
κ∗5
60

+ · · · .

VIX and SVIX are equally sensitive to the risk-neutral variance of logRT , but

SVIX is more sensitive to the higher risk-neutral cumulants.

To connect to the real-world cumulants, recall that we are assuming that

the marginal investor has power utility. The SDF is therefore proportional to

R−γT , so for any time-T payoff X, E∗X = E
(
XR−γT

)
/E
(
R−γT

)
. From this it

follows, on setting X = Rθ
T , that κ∗(θ) = κ(θ − γ)− κ(−γ). So

VIX2 =
2

T
[κ(1− γ)− κ(−γ)− κ′(−γ)] and SVIX2 ≈ 1

T
[κ(2− γ)− 2κ(1− γ) + κ(−γ)]

which gives (21) and (22) after annualizing the cumulants by writing κn ≡ 1
T
κ̃n.

To show that, for n > 2 and γ > 1, we have αn > βn, we must check that

2
[
(γ − 1)n − γn + nγn−1

]
> (γ − 2)n − 2(γ − 1)n + γn.

(The result is trivial if γ = 1.) Changing variables to γ̂ = γ−1, we must show

that

2
[
γ̂n − (1 + γ̂)n + n(1 + γ̂)n−1

]
> (γ̂ − 1)n − 2γ̂n + (1 + γ̂)n.

This inequality relates two polynomials in γ̂. But notice that terms in γ̂n and

γ̂n−1 cancel on both sides. To establish the inequality, I will show that, for
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0 ≤ m ≤ n − 2, the coefficients on γ̂m are nonnegative, and larger on the

left-hand side than on the right-hand side. Since γ̂ > 0, this will establish the

result.

Using the binomial theorem, the coefficient on γ̂m on the left-hand side is

2

[
−
(
n

m

)
+ n

(
n− 1

m

)]
= 2(n−m− 1)

(
n

m

)
,

where I use the fact that n
(
n−1
m

)
= (n −m)

(
n
m

)
. The coefficient on γ̂m in the

right-hand side is (−1)n−m
(
n
m

)
+
(
n
m

)
, which equals 0 if n−m is odd, and 2

(
n
m

)
if n −m is even. Thus, so long as n −m − 1 ≥ 1—that is, for m ≤ n − 2—

the coefficient on the left-hand side is larger than that on the right-hand side

whether n−m is even or odd.

Since the coefficients on γ̂m on the right-hand side are strictly positive for

even n−m, this also establishes that the right-hand side is greater than zero,

that is, βn > 0.

Conclusion of proof of Result 7. It remains to show that any one of conditions

B1–B4 implies that the NCC holds. To do so under any of B1, B2, or B3,

we will show that MTRT is decreasing in RT , from which the result follows.

Condition B4 will be handled separately.

If B1 holds then, as mentioned above, the SDF is proportional to u′(RT ).

This reduces the problem to showing that RTu
′(RT ) is decreasing in RT , which

holds because its derivative is u′(RT ) +RTu
′′(RT ) = −u′(RT ) [γ(RT )− 1] ≤ 0.

If B2 holds, the first-order conditions for the investor’s problem imply that

βJ ′[WT ]/J ′[W0] is an SDF. At this point we could invoke the envelope theorem,

J ′[Wt] = u′(Ct), to arrive at the SDF βu′(CT )/u′(C0). Here, however, it is

more convenient to think in terms of the value function J . Since the marginal

investor holds the market, the chosen portfolio weights wi are such that WT =

(W0−C0)RT . That is, the SDF is proportional to J ′ [(W0 − C0)RT ]. We must

therefore show that RTJ
′ [(W0 − C0)RT ] is a decreasing function of RT . This

follows because its derivative with respect to RT is −J ′ [WT ] {Γ(WT )− 1},
which is less than or equal to zero because Γ(x) ≥ 1.

If B3 holds, then the SDF is equal (up to constants of proportionality that

are known at time 0) to C
−ϑ/ψ
T Rϑ−1

T , where ϑ ≡ (1 − γ)/(1 − 1/ψ), with γ
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denoting the investor’s risk aversion and ψ denoting the elasticity of intertem-

poral substitution; and the representative investor’s wealth is proportional to

the return on the market. Together, these imply that

MTRT ∝ C
−ϑ/ψ
T Rϑ

T =

(
CT
WT

)−ϑ/ψ
W
−ϑ/ψ
T Rϑ

T ∝ R
ϑ−ϑ/ψ
T = R1−γ

T ,

which gives the result.

If B4 holds, we take a different approach. Write MT = e−rf+σMZM−σ2
M/2

and RT = eµR+σRZR−σ2
R/2, where ZM and ZR are correlated standard Normal

random variables. Define λ = (µR− rf )/σR to be the Sharpe ratio conditional

on time-0 information. Some straightforward algebra shows that EMTR
2
T ≤

ERT if and only if λ ≥ σR.

D Construction of SVIX

The data are from OptionMetrics, runnning from January 4, 1996, to Jan-

uary 31, 2012; they include the closing price of the S&P 500 index, and the

expiration date, strike price, highest closing bid and lowest closing ask of all

call and put options with fewer than 550 days to expiry. I clean the data in

several ways. First, I delete all replicated entries (of which there are more than

500,000). Second, for each strike, I select the option—call or put—whose mid

price is lower. Third, I delete all options with a highest closing bid of zero.

Finally, I delete all Quarterly options, which tend to be less liquid than regular

S&P 500 index options and to have a smaller range of strikes. Having done so,

I am left with 1,165,585 option-day datapoints. I compute mid-market option

prices by averaging the highest closing bid and lowest closing ask, and using

the resulting prices to compute SVIX via a discretization of equation (18).

On any given day, I compute SVIX for a range of time horizons depending

on the particular expiration dates of options traded on that day, with the

constraint that the shortest time to expiry is never allowed to be less than 7

days; this is the same procedure that the CBOE follows. I then calculate the

implied SVIX for T = 30, 60, 90, 180, and 360 days by linear interpolation.

Occasionally, extrapolation is necessary, for example when the nearest-term

option’s time-to-maturity first dips below 7 days, requiring me to use the two

expiry dates further out; again, this is the procedure followed by the CBOE.
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Figure 7: Left: Realized values of the payoffs (1) (dashed) and (11) (solid),

expressed as annualized volatilities in percent. Right: The difference between

the payoff (1) and the payoff (11), expressed as an annualized volatility in

percent: 100×
√

12×
(√

payoff (1)−
√

payoff (11)
)

. In both panels, T = 1

month and ∆ = 1 day.
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Figure 8: VIX–SVIX spread over different horizons.
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