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Abstract

Agents choose to acquire skills ranging from simple and transparent tasks to complex and opaque

ones. While potentially more productive, the latter generate more severe agency problems. In our

overlapping generations model, agents compete with their predecessors. With dynamic contracts, long

horizons help principals incentivize agents. Agents with short horizons are more di¢cult to incentivize

than agents with long horizons. Hence, old agents are imperfect substitutes for young ones. This

reduces competition between generations. As a result, young managers can opt for more opaque

and complex technologies, and therefore larger rents, than their predecessors. Thus, in equilibrium,

complexity and rents rise over time. Our theoretical results are in line with the increase in complexity

and rents observed in the finance sector.
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1 Introduction

Agency problems arise when principals cannot precisely observe and control what agents do and how

they use resources. In this context, to provide agents with the right incentives, principals must leave

them rents. The severity of the agency problem, and the magnitude of the corresponding rents, depend

on the characteristics of the task delegated to the agent. This paper o§ers an equilibrium analysis of

the endogenous determination of these characteristics, and the corresponding dynamics of rents.

In Holmstrom (1979), Grossman and Hart (1983), and Holmstrom and Tirole (1997), the agent’s

ex—ante choice between e§ort and shirking is unobservable. To provide incentives to the agent, the

principal must promise her large compensation in case of success, which gives rise to rents. As shown in

Holmstrom and Tirole (1997), these rents increase with the cost of e§ort, or, equivalently, the private

benefit from shirking. Now, the more complex the task, the larger the e§ort the agent must put in

to master the di¢culty and achieve success, i.e., the larger the cost of e§ort, and hence the agency

rents. Moreover, the greater the opacity of the task, the more di¢cult it is for the principal to monitor

and control the agent.2 Thus, opacity enhances the ability of the agent to engage in actions and use

resources that benefit him rather than the principal.3 This corresponds to large private benefits from

shirking, and hence large rents.

Thomas and Worall (1988), Kocherlakota (1998), Townsend (1979), Diamond (1984), and Bolton

and Scharfstein (1990), emphasize ex—post unobservability and limited commitment. A problem arises

when the agent cannot commit not to leave the firm, while it would be very di¢cult to complete the

task successfully if the agent absconded. In this context, the principal must leave the agent a rent,

to convince him not to abscond. The more complex and opaque the task, the more di¢cult it is to

complete it without the agent, the larger the rent. A particularly perverse example, was o§ered by

AIG, where, after very large losses, the principals (in fact the taxpayers) had to pay large compensation

to retain managers. As written in the new York Times (March 16, 2009): “AIG employees concocted

complex derivatives ... taxpayers need to keep some of these brainiacs in their seats.. only they can

2As shown in Sato (2015), opacity increases information asymmetry between the principal and the agent.
3Similarly, complexity can reduce the ability of the principal to monitor the agent. This can arise due to bounded

rationality, in line with the analysis of Brunnermeier and Oehmke (2008): because of information overload, boundedly

rational principals cannot check each step, nor grasp the entirety, of complex processes. Furthermore complex tasks are

less standard, and therefore more di¢cult to benchmark.
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. . . figure out how to unwind these tricky investments.” While extreme, this case vividly illustrates the

link between complexity and rents.

Now, the literature often takes as given the characteristics of the agent’s task, and of the corre-

sponding agency problems. Yet, in practice, agents acquire skills appropriate for activities, sectors

or products with various levels of complexity and opacity. Then firms hiring these agents engage in

activities with agency problems of various magnitudes.4 This paper studies the equilibrium choice of

skills and tasks, and of the corresponding dynamics of agency problems and rents.

To clarify the origin of rents in our analysis, we assume there is no scarcity of managers. Thus, if

the market for managers was frictionless, principals would hire only those managers that are optimal

from their point of view, maximizing returns net of rents. Since agents would choose to acquire only

those skills that make them employable, complexity and opacity would not rise above what is optimal

for principals. In contrast, we assume there are frictions in the labour market.

We consider an overlapping generations model, in which agents live two periods. At the beginning

of his life, a generation t young manager chooses (at a cost) a given skill and a corresponding task,

denoted by b. b parametrizes both the productivity of the agent and the magnitude of the agency

problem. Large bs can correspond to more productive activities, but they also entail larger agency

rents. Then, each young principal meets a young agent, observes his b, and decides whether to hire

him or not. When making this choice, the principal bears in mind that she could instead i) search for

another generation t agent or ii) hire a generation t− 1 agent, and then another agent at time t+ 1.

We assume principals incur a (possibly very small) cost when searching managers. This shuts down

competition between contemporaneous managers, as in Diamond (1971), enabling one to focus on the

key driving force in our model: competition between successive generations.

It is particularly attractive for a generation t principal to try and hire a generation t − 1 agent

if low bs were chosen by that generation. Thus, when generation t − 1 chose relatively transparent

and simple tasks, this limits the ability of generation t to increase its own b to earn high rents. The

competitive pressure imposed by the previous generation is limited, however, by the endogenously im-

perfect substitutability among generations. The intuition is the following: To reduce rents, principals

4Again, AIG o§ers an extreme, but vivid, illustration: Traditionally the firm o§ered standard insurance services.

Then, starting, in the early 2000s, AIG started hiring highly skilled financial engineers and dealing in complex credit

default derivatives, for which agency problems were much more severe.
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defer compensation (as in Becker and Stigler, 1974, and Rogerson, 1985). This makes it relatively

unattractive for a young principal to hire an old agent. Indeed, old agents have short horizons, which

prevents deferring their compensation to reduce their rents. Thus, other things equal, it is cheaper to

incentivize young agents than old ones. Because old agents are imperfect substitutes for young ones,

the latter can a§ord to choose technologies with greater agency problems than their predecessors, and

still be hired. This gives rise to an upward trend in complexity, opacity, incentive problems and rents.

This progressive deterioration in transparency and simplicity standards, paralleled by an increase in

rents, is the core result of our paper. Note that, even when higher complexity raises gross returns, it

eventually results in lower net returns for investors.

Since, when choosing its b, generation t− 1 sets a benchmark for generation t, while the actions of

generation t− 1 have no exogenous direct e§ect on the following generation, they exert an endogenous

externality on the latter. Now, when choosing a relatively high level of complexity, generation t − 1

does not internalize that this will lead to an even larger level of complexity at the next generation.

Consequently, equilibrium can be ine¢cient, calling for public policy intervention. To analyze this

point, we consider a regulator, who can set transparency and simplicity standards, monitor agents,

and punish those who don’t comply, i.e., whose bs are above the standard.

First, we analyze the permanent monitoring case, in which the regulator sets a constant trans-

parency and simplicity benchmark. In this case, we show that multiple equilibria can arise, in contrast

with the laissez faire case, where equilibrium is unique. Under laissez faire, generation t managers

are disciplined by their competitors from the previous generation. Thus, the equilibrium choice of

b at time t is the unique best response to the predetermined level of b at time t − 1. In contrast,

with permanent monitoring, the choice faced by a generation t manager depends on the anticipated

choice of his contemporaneous competitors. If the latter are expected to comply with tough standards,

then the generation t manager prefers to do the same, to remain employable. If, on the contrary, it

is expected that managers don’t comply, and deviate to high bs, then each generation t manager

can find it optimal to deviate. This can be interpreted in terms of social norms: When the norm is

compliance, i.e., everyone is expected to comply, then the optimal action is to stick to this “ethical”

norm. When the norm is non—compliance, i.e., everyone is expected to deviate to high bs, above the

standard requested by the regulator, it can be individually optimal to deviate. Thus, when norms are
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“unethical” (and “all continue to dance as long as the music is playing”), light—touch regulation is

une§ective. In this context, to ensure compliance, the regulator must go for very intense (and very

costly) monitoring.

Second, we analyze periodic monitoring, and show that it can dominate such costly permanent

monitoring. With periodic monitoring, the regulator, when it intervenes, chooses a very high mon-

itoring probability. This ensures compliance. After that, the regulator stops monitoring. There is,

consequently, an upward trend in complexity and rents. But that trend is limited, because each

generation sets a benchmark disciplining its successors. After some time, however, bs have grown a

lot, standards have declined, and it is optimal that the regulator, again, intensively monitors for one

period.

Empirical implications: While the economic mechanisms we analyze can be at play in various

settings, our assumptions are particularly relevant for the financial sector. First, innovative financial

activities are often complex and di¢cult to understand for outside investors (as illustrated by the above

mentioned AIG case). This induces asymmetric information about the distribution of returns. Opacity

increases this information asymmetry. For example, private equity or hedge fund managers, whose

strategies are not explained in detail to investors, have private information about the distribution of

the returns of their funds.5 Second, finance faces much less hard—wired technological constraints than

manufacturing. In other words there is more plasticity or flexibility in financial activities. As written

by Henderson and Pearson (2011), “the ability to create instruments with almost any payo§s implies

that there are few limits on the complexity of financial instruments.” This opens up the scope for

creativity. Third, accidents caused by malfunctioning financial innovations are less life threatening

than those caused by innovations in other sectors, e.g., medicine or public transportations. Hence,

innovation is less regulated and monitored in finance. Again, this opens up the scope for creativity.

Our theoretical analysis shows how finance sector managers can take advantage of these characteristics

of the sector to earn rents.

Indeed, the implications of our theory are in line with empirical findings about the financial sector.

Our model generates a simultaneous increase in rents and complexity, which is consistent with the

5This can give rise to the “fake alpha” problem highlighted by Rajan (2008).
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findings of Philippon and Reshe§ (2008). They find that, while in 1980, managers’ earnings were

similar in the finance sector and other sectors, in 2006, finance managers earned 70% more than

comparable managers in other sectors.6 Philippon and Reshe§ (2008) also document that, during this

period, the complexity of the tasks and occupations of finance sector managers grew very significantly.

Their analysis emphasizes the role played by deregulation in this context. Our theoretical result that

market forces may not prevent the rise of rents and opacity, while regulation could stem it, is in line

with their findings. While Philippon and Reshe§ (2008) document the growth in the complexity of the

tasks of finance managers, Greenwood and Sharfstein (2012) document an increase in the complexity

and opacity of the products and techniques in that sector. They find that as the finance sector was

growing, the share of private equity and hedge funds increased relative to the share of standard mutual

fund management. This led to an increase in overall complexity and opacity, since hedge funds and

private equity funds are more opaque and complex than standard mutual funds. Another manifestation

of the increase in complexity and opacity is the growth, documented by Greenwood and Sharfstein

(2012), of the shadow banking system. As noted by Greenwood and Sharfstein (2012) shadow banking

lengthens the credit intermediation process. This, in turn, increases opacity. Anecdotal evidence also

points in the same direction. For example, Greg Smith, an executive director at Goldman Sachs,

decided to resign after 12 years in that institution. In the article he wrote on that topic in The New-

York Times on March 14, 2012, he underscored the rise of complexity, i.e., the increasing tendency to

“pitch lucrative and complicated products to clients even if they are not the simplest investments or

the ones most directly aligned with the client’s goals.”7

Our theory predicts that younger generations of managers tend to use more complex or opaque

financial products than older generations. This echoes findings in the empirical literature: Almazan

et al. (2004) look at restrictions found in the contracts between mutual fund investors and managers

on complex investment techniques such as shorting or using options. Consistent with the implications

6Additional evidence about the finance premium is o§ered by Goldin and Katz (2008), who find that, in 2005, Harvard

graduates working in finance earned 95% more than those working in other sectors. This is also consistent with anecdotal

evidence, e.g., an article entitled “Bank sta§ costs take bigger share of pot” (Financial Times, June 5, 2012) stated that,

in a survey of 13 global financial institutions in 2011, total bankers’ compensation was 81% of the sum of dividends,

retained earnings and bankers’ pay.
7See http://www.nytimes.com/2012/03/14/opinion/why-i-am-leaving-goldman-sachs.html?_r=1&src=me&ref=general
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of our model, they find that restrictions decline over time (their time-period is 1994-2000) and that

newer funds and younger managers tend to be significantly less constrained than older ones.8

Another implication of our theoretical analysis is that the increase in rents, opacity and complexity

spurred by an initial deregulation shock is not instantaneous. Rather it can be sustained and delayed.

Hence our theory implies that sustained increases in rents and opacity can take place at points in

time where there is no current changes in exogenous variables. This is a caution against empirical

analysis attempting to match changes in rents and opacity with contemporaneous or recent changes

in regulation.

Yet another implication of our analysis relates the increase in rents to the search for yields. In

general, the rise of opacity and rents is limited by the constraint that agents must leave enough return

to the principals to convince them to delegate the management of their wealth rather than self—invest

it. When the safe return and the return on indexing are low, so is the return on self—investment. This

increases the ability of agents to increase opacity to extract rents.

Finally, our analysis implies that experienced managers and junior managers are imperfect sub-

stitutes. This should show up in hiring and compensation data. For example, when new slots open

up, experienced managers are imperfect substitutes for junior ones. Our theory also predicts that

imperfect substitutability, and its consequences, should be stronger when incentive problems are more

severe and when compensation is more backloaded.

Literature: Our analysis of the welfare costs induced by agents’ opting for socially unproductive

rent—seeking is in line with Baumol (1990) and Murphy, Shleifer and Vishny (1991). Both in their

analysis and ours, rent—seeking agents impose costs upon the others. But, in Baumol (1990) and

Murphy, Shleifer and Vishny (1991) these costs are directly induced by the actions of the rent—seeker,

e.g., warfare, litigation or predatory trading. In contrast, in our analysis, the initial choice of the

agent (the level of opacity and complexity of the activity) has an indirect endogenous impact on the

principal, via the agency rent it induces, and also on subsequent increases in complexity.

8Similarly, Chernenko et al. (2014) find that managers who are younger or less experienced were more likely to buy

non-traditional securitized products (mortgage backed securities backed by nonprime loans) prior to the 2007 financial

crisis.
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Our work is also related to Myerson (2012)’s and Axelson and Bond (2015)’s equilibrium analyses

of dynamic contracting with overlapping generations and moral hazard. An intriguing feature of the

model in Axelson and Bond (2015) is that agents can be assigned to two types of task, with di§erent

levels of moral hazard and productivity. Thus, a common theme in their paper and ours is the choice of

tasks, and corresponding moral hazard, arising in equilibrium. The endogenous rise in rents, reflecting

imperfect competition between successive generation, is one of the key specific results of our model,

di§erentiating it from Myerson (2012) and Axelson and Bond (2015).

Our point that agents in the finance industry choose complex products and techniques to increase

the rents they extract from principals, echoes the point made by Carlin (2009) that competing financial

institutions design complex products to increase their market power. A major di§erence is that our

analysis hinges on agency problems, which can arise even with large rational investors, while Carlin

(2009) focuses on retail investors and abstracts from agency issues.

Our analysis is also related to that of Bolton, Santos and Scheinkman (2013). In their paper

also, opportunistic occupational decisions lead to rents, opacity and ine¢ciencies. Also, both papers

uncover externalities associated with the development of opaque activities and markets. The economic

mechanisms at work in the two papers are di§erent, however. In Bolton et al (2013), when many agents

choose to become dealers in the opaque OTC market, this worsens adverse selection in the other

(transparent) market, which increases the bargaining power, and hence the rents, of contemporaneous

OTC dealers. In contrast, in our analysis, when agents choose opaque investment techniques, this

worsens moral hazard, and increases rents, for the following generations.

Last, our paper is related to the literature on social norms, which explores, notably, how parents

transmit values or preferences to their children (see, e.g., Bisin and Verdier, 2000). In our model,

in contrast with that literature, the transmission of norms from one generation to the next is driven

by competition between generations. And we show that the imperfection of that competitive process

induces a decline in standards.

The next section presents the model. Section 3 presents the the optimal contract designed by one

principal, hiring one agent for two periods. Section 4 embeds this bilateral contracting problem in an

equilibrium labour market context and analyzes the dynamics of rents. Section 5 discusses welfare

and policy. Section 6 briefly concludes.
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2 Model

Investors and managers: Consider an overlapping generations model, where, each period, a

mass—one continuum of investors and a mass—M continuum of managers are born. M ≥ 1, so that there

is no scarcity of managers. Also, because we consider an overlapping generations model, successive

generations of managers coexist in the market at a given point in time, which creates the scope for

competition between generations.

All market participants are risk neutral, have limited liability and live for two periods. The discount

factor of investors is ρ 2 (0, 1), while that of managers is β 2 (0, 1). In line with the literature on

dynamic financial contracting (e.g., DeMarzo and Fishman (2007) and Biais, Mariotti, Plantin and

Rochet (2007)), we assume ρ ≥ β.

Each investor is initially endowed with one unit of investment good. She can invest it in a default

technology, which she can operate herself and which returns 1 unit of consumption good per period

during two periods. Alternatively, she can delegate the management of her capital to an agent,

hereafter referred to as “the manager”. For simplicity the choice between self—investment and delegated

investment is irreversible.

Managers have zero initial endowment. At the beginning of his life, each young manager must

choose among a range of investment techniques indexed by b 2 [0, 1]. Each technique corresponds to

a specific type of skills, knowhow and human capital. The (non—monetary) cost of acquiring skills b

is equal to cb, with c ≥ 0. b indexes the sophistication and complexity of the investment technique. c

is the cost of acquiring the skills necessary to design complex products and strategies.

Importantly, the choice of b is irreversible. The idea is that managers acquire skills, human capital,

relations and knowledge of investment techniques at an early stage in their career. Then, they use

this informational capital.9 We hereafter often refer to the b chosen by a manager as his “type.”

When entrusted with one unit of capital, a manager with sophistication b can generate return

equal to R(b) ≥ 1 units of consumption good per period during each of the two periods of his life.

We assume R is continuous, increasing and concave in the sophistication of the investment, b.10 R0(b)

9See Oyer (2008) for empirical evidence on long term e§ects of initial career paths in the financial sector.
10The assumption that R is increasing is not needed for our analysis. All our qualitative results are upheld when R is

constant. Moreover, one can interpret R(b) as the e¢cient frontier of the production set, in b/output plane.
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denotes the left derivative of R(b). Since R is concave, R0 is decreasing and, in the same as spirit as

Inada conditions, we assume that R0(1) = 0.

Agency problems: While sophistication can increase gross returns, it also increases the com-

plexity of the investment process, its opacity for investors, and, thus agency problems. To model

these problems, we assume, as in Holmstrom and Tirole (1997), that at the beginning of each period,

the agent can exert e§ort or shirk. One can equivalently assume that e§ort is costly or that shirking

generates private benefits.11 The cost of e§ort includes the cost of screening and selecting the right

projects, carefully implementing them, and ensuring they are completed. This cost increases with the

complexity of the task. Private benefits arise when agents engage in activities that are beneficial for

them, without increasing the returns for the principal. This includes activities enabling the agent

to acquire reputational, human or relational capital. Opportunities for private benefits extraction in-

crease with complexity and opacity of the task. Following Holmstrom and Tirole (1997) we cast our

model in terms of private benefits from shirking.

For simplicity, we assume that, when the agent exerts e§ort, the project generates cash flow R(b)

for sure, while, when the agent fails to exert e§ort, cash flows can be R(b) with probability 1−∆, or

0 with probability ∆. The agency problem arises because only the agent knows if he exerted e§ort or

shirked (e§ort is unobservable by investors) and the agent has limited liability. We assume the private

benefit from shirking is equal to b∆R(b). This can be interpreted as follows: Private benefits from

shirking are equal to a fraction (b 2 [0, 1]) of the loss in expected output due to shirking (∆R(b)),

so that (other things equal) increasing b raises the attractiveness of shirking for the agent. Thus, we

consider a set of investments technologies, indexed by b, varying in terms of productivity and agency

problems, and we interpret tasks that are potentially more productive, but also exposed to more severe

agency problems, as complex and opaque.12

Sequence of play: Within each period t ≥ 1, the timing of actions is the following:
11The di§erence is that, while the cost of e§ort is incurred on the equilibrium path, the private benefits from shirking

are not. This leads to slightly simpler expressions.
12For simplicity and brevity, we don’t model explicitly how complexity and opacity a§ect agency problems. For a

model of that link see Sato (2015).
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• Stage 1: Young manager i in generation t chooses bit 2 [0, 1).

• Stage 2: Each young investor is matched with one young manager, observes his bit, and decides

whether to make him a take—it—or—leave—it contract o§er or reject him.13 Since there is a mass

one of investors, and a massM > 1 of managers, each manager is matched with an investor with

probability 1/M . This probability is the same for all managers. In particular, it cannot depend

on the choices made by managers at stage 1, because an investor observes a manager’s b only

after being matched with him.

• Stage 3: If the investor decides to reject the young manager with whom she was matched, or

if the manager rejects the o§er, then the investor decides whether to self—invest or search for

another manager, at cost ϵ, which can be arbitrarily small. If the investor decides to continue

searching for managers, she can direct her search towards young or old managers. Then, on

meeting a new manager, the investor observes his type and can make him a take—it—or—leave—it

o§er, and the process is iterated. Eventually, investment takes place.

• Stage 4: Each employed manager decides whether to exert e§ort or not, then output is realized

(and equals R(bit) or 0), and the manager receives the compensation stated in the contract.

This timeline is illustrated in Figure 1. At period t+ 1, the investor and the manager continue to

apply contract signed at stage 2 of period t. If the time t output was 0 and the contract stated the

manager should be fired in that case, the investor can search for a new agent, at cost ϵ.

3 Optimal contracting

In this section, we analyse the optimal contract designed by one principal, hiring one agent, taking bt

as given. In the next section we embed this contracting problem in a market equilibrium and study the

endogenous determination of bt. The compensation contract o§ered at time t by the investor states

the wages to be received by the manager as a function of the output realized at time t and at time

t+ 1. It also specifies if the manager should be kept after period t or fired.

13For simplicity we assume principals can commit to the contracts they o§ered to an agent.
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First consider the contract requesting the agent to exert e§ort at both times. In that case, on the

equilibrium path, the output is equal to R(bt) at each period. It is clearly optimal to fire the manager,

without any compensation, when output is 0. Hence, the time t contract is pinned down by the pair

of wages, wtt and w
t
t+1, paid to the manager if output R(bt) is generated in period t and in period

t + 1. After success at time t, the incentive compatibility condition at time t + 1 is that the gain of

the agent when exerting e§ort (wage wt+1) be larger than or equal to his gain when shirking (wage

with probability 1−∆ plus private benefit from shirking)

wtt+1 ≥ (1−∆)w
t
t+1 +∆btR(bt),

that is

wtt+1 ≥ btR(bt). (1)

At the end of period t, after R(bt) has been obtained, the continuation utility of the agent, anticipating

e§ort at t+ 1, is βwt+1. Thus, at time t the incentive compatibility condition is

wt + βw
t
t+1 ≥ (1−∆)(w

t
t + βw

t
t+1) +∆btR(bt).

That is

wtt + βw
t
t+1 ≥ btR(bt). (2)

In this section we normalize the outside option of the manager to 0, so that his participation con-

straint never binds. In the next section, the endogenous outside option of the manager will still be

0. The program of the investor is to maximize expected net returns subject to incentive compatility

constraints, i.e.,

max
wtt ,w

t
t+1

R(bt)(1 + ρ)− wtt − ρw
t
t+1, s.t., (1) and (2). (3)

The solution to this program is spelled out in the next lemma.

Lemma 1: At time t, for a given choice of bt, the solution to (3) is such that (1) and (2) bind

and the wages conditional on success are

{wtt, w
t
t+1} = {(1− β)btR(bt), btR(bt)}.
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Complexity, net returns and rents. By Lemma 1, the present value of the fund manager’s

earnings is

wtt + βw
t
t+1 = btR(bt). (4)

Thus, the agent captures a fraction (bt) of the gross return on the investment over one period (R(bt)).

As the complexity of the investment technique (bt) increases, the total gross return increases, because

R0 ≥ 0. In addition, the fraction of that return captured by the agent also increases, because the

agency problem worsens. Combining these two e§ects, the compensation of the agent increases with

the complexity of the investment technique.

While agents benefit from an increase in complexity, principals can be made better o§ or worse o§

when complexity rises. Indeed,

Z 0(bt) = [(1 + ρ)− (1 + ρ− β)bt]R0(bt)− (1 + ρ− β)R(bt).

Because (1 + ρ) > (1 + ρ − β)bt and R
0
(b) is decreasing, the investors’ net return is concave in the

complexity of the investment technique. And because R0(1) = 0, we have Z 0(1) ≤ 0. Thus, starting

from Z(0), investors’ net return initially increases with b, reflecting the increase in gross return R(b).

Then, it reaches a maximum point at

b∗ = argmax
b
Z(bt). (5)

Finally, for b > b∗, investors’ net return goes down with b, reflecting that an increasing fraction of

the return is captured by the agent. To make things interesting, we assume Z(0) ≥ 1 + ρ, i.e., at the

lowest level of complexity the enhancement in net return brought about by an increase in b exceeds

the cost c. Finally denote by bmax the highest value of b in [0, 1] such that Z(b) ≥ 1+ ρ, i.e., investors

prefer delegated investment rather than self—investment.

Optimality of e§ort: For the contract in Lemma 1 to be the optimal contract, it must generate

higher net gains for the principal than the alternative contracts requesting i) no e§ort at all, or ii)

e§ort at time t and no e§ort at time t+1, or iii) no e§ort at time t and e§ort at time t+1. By Lemma

1, the net gains of the investor requesting e§ort at both periods are

Z(bt) ≡ R(bt)[(1 + ρ)− (1 + ρ− β)bt]. (6)
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On the other hand, if the principal lets the agent shirk at both periods, he does not need to pay any

wage, and his net gains are

R(bt)(1 + ρ)(1−∆). (7)

(6) is greater than (7) i§

∆
1 + ρ

1 + ρ− β
≥ bt. (8)

Since bt 2 [0, 1], this always holds i§ ∆ is large enough, in the sense that

∆ ≥
1 + ρ− β
1 + ρ

. (9)

As shown in the appendix, under (9) shirking once is also dominated by e§ort at both periods. Hence,

the contract spelled out in Lemma 1 is the optimal contract if (9) holds, which, for simplicity, we

assume hereafter. If we did not make that assumption, there would be a threshold value of b at which

the principal would prefer to give up on e§ort. In equilibrium, agents would not set b above that

threshold, whose role would be similar to that of bmax. Apart from that, relaxing (9) would not alter

our results.

Example: A simple example is when R(b) is the piecewise linear function min[αb+1, R̄], where

α is a positive constant. As explained in the appendix, for this simple case, if the agency problem is

not too severe, in the sense that
1 + ρ

1 + ρ− β
≥
2R̄− 1
α

, (10)

then Z(b) is increasing for b ≤ R̄−1
α , and b∗ = R̄−1

α . This example is illustrated in Figure 2.

4 Equilibrium dynamics

We now turn to the dynamics of the choice of investment techniques by managers and the corresponding

equilibrium outcomes. We focus on symmetric equilibria, in which all managers born at time t choose

the same equilibrium level of complexity, b∗t .

As stated in (4), the present value of an employed manager’s earnings is bR(b) which is increasing

in b. For simplicity, we assume that the value function of an employed manager, bR(b) − cb, is also
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increasing in b.14 This implies that, at any time t, bt < b∗ would be Pareto dominated since both

managers and investors would be better o§ with a larger b. So we initialize the process at b∗0 = b∗.

From that point on, any increase in complexity reduces the net returns of investors, while raising the

rents of managers. Thus, there is a conflict of interest between the former and the latter. We now

study whether market forces lead to an equilibrium that is more favourable for the investors (keeping

complexity at b∗) or for the managers (letting complexity rise above b∗).

Given an initial level of complexity, b∗0, an equilibrium is a sequence E = {b∗t , wt
∗

t , w
t∗
t+1}t≥1, satis-

fying the following conditions:

• Optimization: At each time t, each young manager i chooses bit to maximize his gains, and

each investor makes an optimal hiring decision.

• Rational expectations: Investors and managers have rational expectations about the equilib-

rium dynamics E and find it optimal to also play according to E . Thus, on the equilibrium path

at time t, young manager i finds it optimal to set bit = b∗t , and each investor o§ers the optimal

contract

{wt∗t , w
t∗
t+1} = {(1− β)b

∗
tR(b

∗
t ), b

∗
tR(b

∗
t )}. (11)

In each generation, at stage 2, each manager is drawn with probability 1
M . This probability does

not vary with managers’ types, because we assume that, before contacting the manager, the investor

cannot observe the manager’s type. Once drawn, a manager strictly prefers to be hired and earn (4).

Thus, at stage 1, manager i chooses bit to maximize his expected gains

1

M
R(bit)b

i
t − cb

i
t, (12)

subject to the constraint that the investor be willing to hire him when drawing him, and the partic-

ipation constraint that his ex—ante expected profit be non—negative. Since bit ≥ b∗, the participation

constraint holds under the following maintained assumption

R(b∗)

M
≥ c. (13)

14More formally, the condition is 1
M
(R(b) + bR0(b)) ≥ c, 8b.
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(13) implies that the rents which must be left to the agent to ensure incentive compatibility are

always large enough that the agent recoups from the initial cost of acquiring skills. If (13) did not

hold, since principals cannot commit to compensation before they meet agents, there would be a

market breakdown: Agents would not acquire skills ex-ante, because they woudl anticipate not to be

adequately rewarded for these ex—post.15

We now analyze the condition under which the investor prefers to hire agent i after drawing him

from the pool, rather than opting for self investment, or continuing to search for managers. To do so,

we need to compare the investor’s payo§ when hiring the young manager to her payo§ from alternative

actions.

• The first alternative option for the investor is self—investment. She does not choose that option

if her net return on delegated investment, Z(bit), is larger than

1 + ρ. (14)

• The second alternative option for the investor is to hire an old agent in period t and then hire

a generation t manager at t+ 1. At time t she would have to compensate the old agent enough

to avoid shirking. This would entail promising the old agent compensation at least as large as

b∗t−1R(b
∗
t−1). Such compensation would attract the old manager irrespective of whether he is

employed or not. Similarly, at time t+1 the investor would have to pay the new recruit b∗tR(b
∗
t ).

Hence, overall, if she were to opt for that deviation, the time t investor would expect to get

R(b∗t−1)(1− b
∗
t−1) + ρR(b

∗
t )(1− b

∗
t )− ϵ(1 + ρ), (15)

where the last term (ϵ(1 + ρ)) is the search cost of going after an old manager at t and then

another one at t+ 1.

• The third alternative option for the investor is to hire an old manager at t and then a young

one at t + 1. In this case, when deviating, the generation t investor expects to pay b∗t−1R to

15This points to a benefit of agency rents: They compel the investor to compensate initial investment in skills by

agents. This provides incentives for such investment, which, up to b∗, is socially optimal.
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the old manager she hires at time t, and b∗t+1R to the young manager she hires at time t + 1.

Consequently, the deviating investor expects to earn

R(b∗t−1)(1− b
∗
t−1) + ρR(b

∗
t+1)(1− b

∗
t+1)− ϵ(1 + ρ). (16)

• The fourth alternative option for the investor is to search for another young manager at time t,

expecting to hire him for two periods and to compensate him with {wt∗t , wt∗t+1} given in (11). In

this case the investor expects to earn

Z(b∗t )− ϵ. (17)

Overall, the employability constraint for the young manager is that Z(bit) be larger than or equal

to (14), (15), (16), and (17). Since the expected gain of the young manager is increasing in b as long

as he remains employable, his maximization problem is

max
b2Ωt

b,

where Ωt is

[b∗, bmax]
\
{b s.t. Z(b) ≥ max[R(b∗t−1)(1−b

∗
t−1)+ρmax[R(b

∗
t )(1−b

∗
t ), R(b

∗
t+1)(1−b

∗
t+1)]−ϵ(1+ρ), Z(b

∗
t )−ϵ]}.

The solution of this maximization problem is stated in the next lemma.

Lemma 2: The maximisation program of the young agent at time t has a unique solution bt

which is either equal to bmax or such that

Z(bt) = max[R(b
∗
t−1)(1− b

∗
t−1) + ρmax[R(b

∗
t )(1− b

∗
t ), R(b

∗
t+1)(1− b

∗
t+1)]− ϵ(1 + ρ), Z(b

∗
t )− ϵ]. (18)

Equation (18) implicitly defines the function φ giving the solution of the maximisation problem at

time t as a function of b∗t−1, b
∗
t and b

∗
t+1, i.e., bt = φ(b∗t−1, b

∗
t , b

∗
t+1). That is, φ can be interpreted as

a best response function. In equilibrium, the young investor must find it optimal to choose a level of

complexity equal to b∗t . Therefore, either b
∗
t = bmax or

b∗t = φ(b∗t−1, b
∗
t , b

∗
t+1). (19)
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It can never be the case that Z(b∗t ) = Z(b∗t ) − ϵ, even when ϵ is arbitrarily small, as long as it

is strictly positive. Thus the cost of searching for managers, even if it is very small, shuts down

competition within the same generation.16 Consequently, (18) simplifies to

Z(b∗t ) = R(b
∗
t−1)(1− b

∗
t−1) + ρmax[R(b

∗
t )(1− b

∗
t ), R(b

∗
t+1)(1− b

∗
t+1)]− ϵ(1 + ρ). (20)

When it is expected, that complexity will increase at t + 1, then either b∗t = bmax (in which case

b∗t ≥ b∗t−1), or (20) simplifies to

R(b∗t )(1− b
∗
t )−R(b

∗
t−1)(1− b

∗
t−1) = −βb

∗
tR(b

∗
t )− ϵ(1 + ρ). (21)

R(b)(1− b) is the net return to an investor hiring a manager, with skill b, for one period. For b ≥ b∗,

this net return is decreasing with b, reflecting that the manager extracts an increasing fraction of the

surplus.17 Since, the right—hand—side of (21) is negative, we have that R(b∗t )(1−b∗t ) ≤ R(b∗t−1)(1−b
∗
t−1),

that is b∗t ≥ b∗t−1. Thus, between t − 1 and t, there is an increase in complexity, worsening agency

problems, and eroding investors’ returns while raising managers’ rents. This is stated in the next

lemma.

Lemma 3: If b∗t+1 ≥ b
∗
t , then b

∗
t ≥ b∗t−1.

To interpret the increase stated in Lemma 3, consider the right—hand—side of (21). ϵ(1+ρ), the cost

incurred by investors searching for another manager, obviously limits competition between managers,

in particular managers belonging to the same generation (as in Diamond, 1971). To focus on the

specific economic mechanism at play in our model, which is driven by competition between managers

from di§erent generations, consider the limit case where ϵ goes to 0. In that case, the increase in

b is solely driven by βb∗tR(b
∗
t ). This is the di§erence between the net investor’s revenue when the

principal hires an agent with type b∗t on a long term basis (Z(b∗t )) and when she hires the agent via

16As discussed below, this is similar to Diamond (1971), but, in contrast with Diamond (1971), in our model, managers

from generation t also compete with their predecessors and successors.
17To see this note that Z0(b), which for b ≥ b∗ is negative, is equal to the derivative of R(b)(1 − δb) plus a positive

term.
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a sequence of short—term contracts ((1 + ρ)R(b∗t )(1− b∗t )). This is a measure of the advantage of long

term contracting, which is feasible with young agents, but not with old ones. Thus, it is a measure

of the extent to which old managers are only imperfect substitutes for old ones. (21) shows how

young managers take advantage of this imperfect substitutability: They raise complexity (and thus

rents) above the prior level, up to the point at which investors are indi§erent between i) hiring young

managers on a long—term basis to manage more complex investment techniques, and ii) hiring old

managers on a short—term basis to manage less complex techniques.

While Lemma 3 spells out what happens at time t when b is expected to rise after t, the next

lemma states that future bs cannot decrease in equilibrium.

Lemma 4: b∗t never decreases.

The intuition for Lemma 4 is the following. By Lemma 3, if b was to decrease at t, it would have to

decrease also at t+1. Iterating, b would have to decrease below 0, which is a contradiction. Combining

Lemmas 2, 3 and 4, we obtain our first proposition:

Proposition 1: There exists a unique symmetric equilibrium. In that equilibrium, investors hire

managers from their own generation for two periods. Equilibrium complexity, b∗t , increases until it

reaches bmax. Starting from b∗0 = b
∗, as long as b∗t < bmax, b

∗
t is the unique solution of the recursive

equation (21), which implicitly defines the function  mapping b∗t−1 into b
∗
t .

Proposition 1 directly implies the next corollary, which gives a lower bound on the increase in b∗t

due to imperfect competition among generations.

Corollary 1: As long as b∗t < bmax, the growth of b
∗
t is faster than exponential, i.e.,starting from

b∗0 = b
∗,

b∗t ≥
b∗

(1− β)t
. (22)

The greater the patience of the agent (β), the greater the advantage of long—term contracts over

short term—contracts, the lower the substitutability among generations, the higher above b∗t−1 gener-

ation t can raise b∗t . Hence the larger the lower bound on the growth of b
∗
t .
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Relation with Diamond (1971) and role of ϵ. If ϵ was strictly equal to 0, the equilibrium

condition would be

Z(b∗t ) = max[1 + ρ, R(b
∗
t−1)(1− b

∗
t−1) + ρmax[R(b

∗
t )(1− b

∗
t ), R(b

∗
t+1)(1− b

∗
t+1)], Z(b

∗
t )]. (23)

The process b∗t presented in Proposition 1 solves (23), and thus remains an equilibrium when ϵ = 0.

There are, however, other equilibria, in which the equilibrium value of b is between b∗ (defined in (5))

and b∗t (characterized in Proposition 1). In those equilibria, it is the last term (rather than the middle

one) that binds in the max on the right—hand—side of (23). That is, the choice of b by a generation t

manager is constrained by the choices of his competitors from the same generation (not by those of

his predecessors).

(23) arises in the case where investors do not resample after drawing a manager. It is indeed weakly

optimal for them to do so, and the above equilibrium relies on the best—response of managers to this

weakly optimal strategy. Yet, when the search cost is strictly equal to 0 it is also weakly optimal for

an investor to sample all the 1 −M managers that are not employed, after drawing a manager with

b∗t . If a manager anticipated such behaviour, then his best—response would be to opt for b
i
t slightly

lower than b∗t , to make sure he would eventually be drawn and hired. Since all managers would

reason similarly, this would drive the equilibrium choice of b down to b∗. In this type of equilibrium,

competition between managers would lead to the outcome preferred by investors.

These arguments, however, and the possibility for b∗ to be an equilibrium, don’t apply when ϵ is

strictly positive, in which case the unique equilibrium is that characterized in Proposition 1. Thus

ϵ, arbitrarily close to, but strictly above, 0, limits competition between managers belonging to the

same generation. This is comparable to the way search costs limit competition and generate rents

in Diamond (1971). One contribution of our analysis, relative to Diamond (1971), is to study the

equilibrium dynamics of rents, and show they have a tendency to increase along the equilibrium path.

To see this more clearly, note that the model in Diamond (1971) is similar to a one—period version of

our model, where the equilibrium condition on the level of b prevailing at time 1 would be

Z(b∗1) = max[1 + ρ, Z(b
∗
1)− ϵ]. (24)

(24) immediately leads to b∗1 = bmax. This contrasts with our model where b
∗
t progressively increases

over several periods, before eventually reaching bmax. The reason why the increase in b∗t is only
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progressive in our model is that the choice of generation t is constrained by the choices of previous

generations. That anchor does not exist in Diamond (1971). Yet, in our model, the moderating e§ect

of the previous generation is limited, due to imperfect substitutability between generations. Hence

the gradual increase in b∗t .

Externalities. When choosing b∗t−1, generation t− 1 sets a benchmark, with which generation t

will have to compete when choosing b∗t . Thus, while the actions of generation t− 1 have no exogenous

direct e§ect on the following generation, they exert an endogenous externality on the latter. When

choosing a relatively high level of complexity b∗t−1, generation t− 1 does not internalize that this will

lead to an even larger level of complexity b∗t , and thus large rents for generation t managers and low

net returns for generation t investors.

Compensation and seniority. Lemma 1 implies that wtt < wtt+1. Thus, for a given genera-

tion, compensation rises with seniority, i.e., a given agent earns more when senior than when junior.

Proposition 1 and Corollary 1, however, imply that senior managers from the previous generations

earn less than junior managers from the current generation. Indeed, from Lemma 1, wt−1∗t ≤ wt∗t i§

b∗t−1R(b
∗
t−1) ≤ (1− β)b

∗
tR(b

∗
t ). (25)

Since b∗t ≥ b∗t−1, (22) implies (25). This reflects that the increase in rents (driven by the increase in

complexity) from one generation to the next is larger than the increase in compensation, within one

generation, from one period to the next.

Example: In our simple example, where R(b) = min[αb+ 1, R̄], the following corollary obtains:

Corollary 2: If R(b) = min[αb+ 1, R̄] and (10) holds then as ϵ goes to 0, b∗t goes to

b∗

(1− β)t
. (26)

In general, the increase in b∗t above b
∗, made possible by the imperfect substitutability between

old and young managers, is enhanced by the fact that R(b) increases in b. In the simple example,
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however, R(b) is constant when b is above b∗. In that situation, the increase in b∗t is solely due to the

imperfect substitutability between old and young managers. Correspondingly, the growth in b∗t is just

equal to its lower bound, stated in Corollary 1.

5 Welfare and Policy

For simplicity, we hereafter set ρ = β and bmax = 1.

5.1 Welfare

As discussed above, the optimal level of complexity for investors is b∗, which maximizes Z(b), while

for managers it is bmax = 1 ≥ b∗. Now turn to what a benevolent social planner would decide. Since

utilities are linear, there is a unique Pareto optimum regarding real decisions, and the points on the

Pareto frontier di§er only in terms of purely redistributive transfers between investors and managers.

In the first best, the social planner solves the following problem:

max
b2[0,1]

W (b) = (1 + β)R(b)−Mcb.

The optimum is such that the marginal benefit of e§ort equals its marginal cost, i.e.,

b∗∗ = R0−1(
Mc

1 + β
).

Since R
0
(1) = 0, we have b∗∗ ≤ 1. Now,

W (b) = Z(b) + (bR(b)−Mcb).

Hence
@W (b)

@b
|b=b∗ = (R(b∗)−Mc) + b∗R0(b∗),

which, by (13), is positive. Consequently, b∗∗ ≥ b∗. We summarize this discussion is the next propo-

sition:

Proposition 2: The level of complexity preferred by investors is lower than the socially optimal

level of complexity, which, in turn, is lower than the level of complexity preferred by the managers,

i.e.,

b∗ ≤ b∗∗ ≤ bmax.
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The fraction of total surplus obtained by investors is decreasing in b. Therefore they prefer b to

be lower than the social optimum. In contrast, the fraction of total surplus obtained by managers is

increasing in b, and therefore they want it to be higher than the social optimum.

5.2 Policy

In a “laissez faire” equilibrium, the level of complexity trends up from b∗ to bmax, which, as stated in

Proposition 2, is above the social optimum. This raises the scope for policy intervention. To address

this issue, we assume there is a regulator who can set simplicity and transparency standards, and

monitor, at some cost, whether managers comply. To model this, we introduce an additional stage in

the game. Each period t, at stage 0 the regulator announces a cap bt, and an inspection probability

θt, to which we assume he can commit. Then, at stage 1, the young agent chooses bt, and, with

probability θt, is inspected by the regulator. In case of inspection, if bt > bt the agent is prevented

from working. Otherwise, he enters the market and can meet an investor, and the game unfolds.

Finally, we assume the monitoring technology is linear, i.e., there exists a constant γ > 0 such that

the cost of monitoring with probability θt during one period is θtγ. In this context we compare the

performance of three policies:

• Laissez faire, in which the regulator never intervenes.

• Permanent monitoring, in which the regulator sets a constant cap b, and monitors with constant

probability θ to ensure that agents always comply with the regulatory cap.

• Periodic monitoring, which operates as follows: during T − 1 periods (with T finite and strictly

larger than 1), laissez faire prevails, i.e., θ = 0. Then, at the T th period, the regulator intervenes,

sets the maximum b for this period, and monitors the agent with probability θT . Then a new

cycle starts.

For simplicity, in this subsection, we focus on the simple example where R(b) = min[αb+1, R̄] and

(10) holds. In that case, W writes as

W (b) = [(1 + β)α−Mc]b+ (1 + β),8b ≤ b∗ =
R̄

α
and W (b) = (1 + β)R̄−Mcb,8b > b∗,

and we have the following lemma:
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Lemma 5: The level of complexity maximizing utilitarian welfare also maximizes investors’ net

returns, i.e., b∗∗ = b∗.

The lemma reflects the simple form of R(b) in our example, where R(b) is flat above b∗, so that

there is no social gains from raising b above b∗. This enhances the tractability of our analysis of

regulatory intervention.

5.2.1 Permanent monitoring

Suppose the regulator sticks to the stationary monitoring policy with constant standard, b ≥ b∗, and

constant monitoring probability, θ. In contrast with the laissez faire environment, where equilibrium

was unique, monitoring can generate multiple equilibria, with di§erent levels of compliance. The

intuition is the following. Under laissez faire, generation tmanagers are disciplined by their competitors

from the previous generation. Thus, the equilibrium choice of b∗t is uniquely determined by the

predetermined level of b∗t−1, i.e., b
∗
t =  (b∗t−1), as stated in Proposition 1. In contrast, with regulation,

as shown below, generation t managers are disciplined by their competitors from the same generation.

Thus when he expects others to comply a time t, a generation t manager will tend to comply also,

but when he expects the others not to comply, he will also tend not to comply.

To see this more formally, consider under what condition agent i would be employable at time t if

he were to deviate to bit when present and past generations are expected to comply:

Z(bit) ≥ max[R(b)(1− b) + ρR(b)(1− b)− ϵ(1 + β), Z(b)− ϵ]. (27)

The maximum on the right—hand side is Z(b)− ϵ.18 Thus, binding (27) yields Z(bit) = Z(b)− ϵ. This

gives the maximum deviation for which the manager is employable. In our simple example this is

bit = b+
ϵ

R̄
,

which goes to b as ϵ goes to 0.

Now compare the expected gain of the agent who complies to that of the agent who deviates, but

remains employable. The former is larger than the latter i§

b(R(b)− c) ≥ (1− θ)bit(R(b
i
t)− c). (28)

18This contrasts with (18) where the maximum was not attained at Z(b∗t )− ϵ. This is why equilibrium is unique with

laissez faire, not with regulation.
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That is, in our simple case

b ≥ (1− θ)(b+
ϵ

R̄
).

A su¢cient condition is

θ ≥
ϵ

R̄b
.

Thus, when ϵ is very small, even if the probability of monitoring is very small, each manager prefers

to comply if he expects others to. This is stated in the next propositon.

Proposition 3: If market participants expect managers to comply, then when ϵ is very small,

compliance is an equilibrium even if θ is very small.

Proposition 3 emphasizes that if market participants expect compliance, this sets a benchmark

inducing managers to comply. But what if market participants have the opposite expectation? For

example, what happens if all previous generations have complied, but it is expected that, in spite of

regulatory monitoring θ, all future market participants will deviate to the highest bit at which they

still are employable? In this context, it is easy to show (following the same logic as in the previous

section) that the equilibrium b is larger for generation t+1 than for generation t.19 Then, the highest

feasible deviation at time t (anticipating that others deviate to b̂) is bit solving

Z(bit) = R(b)(1− b) + βR(b̂)(1− b̂)− ϵ(1 + β), (29)

where the first term on the right-hand side of (29) is the net gain of the principal hiring an old agent

at time t, while the second term is the net gain of the principal hiring an old agent at t + 1. In

equilibrium, it must be that the value of bit solving (29) is equal to b̂. In our simple case, and setting

ϵ = 0, this pins down the candidate equilibrium value of b̂ at time t:

b̂ =
b

1− β
. (30)

The other condition for a non—compliance equilibrium, is that managers prefer to deviate to b̂

rather than to comply with the regulatory cap b. This is the case if (28) does not hold. In our simple

case, this is

θ ≤ 1−
b

b̂
. (31)

19The intuition is that generation t+ 1 faces easier terms, since it has less “virtuous” predecessors, than generation t.
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Substituting (30) into (31) yields

θ ≤ β. (32)

When managers don’t comply, a fraction θ of them gets caught and cannot work. To avoid scarcity

of managers, we assume

M ≥
1

1− β
, (33)

so that all principals can find and hire a manager. If (33) did not hold, managers’ scarcity would be

an additional reason for rents. To avoid introducing this new ingredient in the model, we focus on the

case where (33) holds.

Thus, as long as θ ≤ β, while compliance is an equilibrium if all managers expect the others to

comply, noncompliance is also an equilibrium if all managers expect the others not to comply. In

particular, the laissez faire equilibrium path b∗t characterized in Proposition 1 remains an equilibrium.

On the other hand, when θ > β, whatever the beliefs of the managers about the behaviour of

the others, all prefer to comply. We refer to that situation as “robust regulation.” The greater the

patience β of the managers, the higher generation t can raise its b over that of the previous generation

(as discussed after Corollary 1.) Hence the more tempting it is to deviate from b, and the larger the

monitoring frequency above which regulation is robust. Note also that the monitoring intensity in

(32) does not does not depend on b. Hence, the optimal choice under robust permanent regulation is

to set b = b∗. Correspondingly, when considering permanent monitoring, we hereafter set b = b∗. The

above discussion is summarized in the next proposition.

Proposition 4: Suppose the regulator follows the permanent monitoring policy (θ, b = b∗) and

assume that ϵ goes to zero. Then, if θ > β, there is a unique equilibrium, and in this equilibrium

all agents comply. In contrast, if θ ≤ β and (33) holds, each sequence {bt}t>0 such that bt 2

{b∗, (bt−1)},8t > 0, is an equilibrium.

The equilibrium multiplicity in Proposition 4 highlights the complementarity arising in compliance

environments, which can be interpreted in terms of social norms. When compliance is the norm, in the

sense of expected behaviour, agents realize that, if they want to remain employable, they must comply
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also. In contrast, when noncompliance is the norm, agents understand that they remain employable

even if they don’t comply, since their competitors also don’t comply.

5.2.2 Periodic monitoring

We hereafter focus on robust regulation, i.e., regulation such that compliance is the only equilibrium.

In this context, permanent regulation, which entails a constant monitoring probability of β/(1 + β),

is quite expensive if the cost of monitoring, γ, is large. Correspondingly, the utilitarian welfare in the

laissez—faire steady—state

R̄(1 + β)−Mcbmax, (34)

is larger than its counterpart under permanent robust monitoring

R̄(1 + β)−Mcb∗ −
β

1 + β
γ, (35)

if

γ >
1 + β

β
Mc(bmax − b∗). (36)

Yet, even when (36) holds, it can be optimal to monitor, but only infrequently. Our next proposition

states that for intermediary values of the monitoring cost γ, periodic monitoring dominates both

laissez—faire and permanent monitoring.

Proposition 5:

If bmax ≥ (1 + β)b∗, there exist thresholds 0 < γ1 < γ2 such that, if γ1 < γ < γ2 , periodic inter-

ventions, at intervals of two or more periods, are better than laissez—faire and constant monitoring.

The economic intuition behind Proposition 5 combines two insights already analyzed in the paper.

First, new generations cannot deviate too much from elder generations in their choice of b. So there

is some form of disciplining e§ect from elder generations on new generations. To save on monitoring

costs, the regulator might rely for some periods on this disciplining e§ect, and then intervene only

after b has risen a lot. Second, monitoring is only e§ective if a critical mass of the population is

inspected. Similarly to fixed costs, this makes infinitesimal levels of monitoring suboptimal. Thus it

is better to rarely monitor a lot than to always monitor a little bit. This is not unlike the dynamics
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arising for optimal investment with fixed costs. The technical condition bmax ≥ (1 + β)b∗ allows that

there is enough space for bt to move according to its laissez-faire dynamics.

5.3 Normative and positive implications

Our theoretical model implies that it can be optimal to have periods of intense monitoring where

the regulator performs a "crack-down" that resets rents at a low level, followed by several periods of

lighter monitoring. This implies that monitoring expenses can be cyclical and should be allowed to

experience spikes: it is optimal to grant regulators with abnormally high levels of funding from time

to time, so that they can hire human capital to perform exceptional amounts of monitoring. In other

words, the usual flow cost of supervision is optimally smaller than what is spent in special times. The

governance and mandate of regulators should thus allow them to expands their budget temporarily

when a "reset" is needed.

Our analysis of monitoring cycles also has empirical implications. In our model, regulatory changes

are slowly o§set by agents, who bring back opacity and rents to their initial level. This means that

the short-term and long-term e§ects of regulations should be di§erent. This potentially matters for

empirical studies using regulatory shocks as natural experiments: the short-term impact of a reform

should be expected to be higher than its long-term impact. In our model, the speed at which the

o§setting of regulation takes place is endogenous. Our model predicts a progressive build-up in rents

and complexity following deregulation episodes, in line with empirical results from Philippon and

Reshe§ (2008).

6 Conclusion

We analyze the dynamics of agency rents. Our key result is that, in equilibrium, transparency and

simplicity standards progressively deteriorate, while rents rise.

In our model, successive generations of agents choose their skills, determining their productivity,

as well as the severity of their agency problems. Because of the link between incentives and horizons,

young and old generations are not perfect substitutes. Thus, young agents can choose more rent-

extracting technologies that their elder peers. They, however, are still constrained not to deviate too
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much from the choices of older generations. This leads to a progressive increase in the rents extracted

by agents, and decrease in the principal’s surplus.

We believe this model is well suited to understand the slow moving rise of rents in finance, an

industry characterized by a high level of technological flexibility. Over time, agents choose more

complex and opaque investment techniques that might be more productive in gross terms, but also

increase rents, so that investors ultimately lose from such technological trend. In the context of our

model, regulatory intervention can be welfare improving. Because older generations constrain (albeit

imperfectly) the choice of future generations, permanent regulation can be dominated by cyclical

regulation, where transparency and simplicity standards are periodically reset at a low level. Between

two regulatory crack-downs, rents and opacity drift upward.
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Proofs:

Proof of Lemma 1: The Lagrangian is

L = R(1 + ρ)− wtt − ρw
t
t+1 + µt(w

t
t + βw

t
t+1 − btR) + µt+1(w

t
t+1 − btR),

where µt and µt+1 are the multipliers of the time t and t+1 incentive constraints, respectively. The first

order condition with respect to wt is: −1+µt = 0. Hence the incentive compatibility constraint at time

t binds, i.e., wtt+βw
t
t+1 = btR. The first order condition with respect to wt+1 is: −ρ+µtβ+µt+1 = 0.

Substituting µt = 1, µt+1 = ρ − β. When ρ > β, µt+1 > 0, so that the the incentive compatibility

constraint at time t+ 1 also binds. Hence, the optimal compensation is as stated in the lemma.

QED

Proof that, under (9), shirking once is dominated by e§ort at both periods: E§ort at

both periods dominates shirking at t, followed by e§ort at t+ 1, if

R(bt)[(1 + ρ)− (1 + ρ− β)bt] ≥ R(bt)[(1−∆) + ρ(1− bt)].

That is
∆

1− β
≥ bt. (37)

E§ort at both periods dominates e§ort at t, followed by shirking at t+ 1, if

R(bt)[(1 + ρ)− (1 + ρ− β)bt] ≥ R(bt)[(1− bt) + ρ(1−∆)].

That is
ρ∆

ρ− β
≥ bt. (38)

Now
1 + ρ

1 + ρ− β
<

1

1− β
≤

ρ

ρ− β
,

Hence if (8) holds (which it does under (9)), then (37) and (38) also hold, so that e§ort at both periods

is optimal.

QED
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R and Z in the simple example: If R(b) = min[αb+ 1, R̄],

Z(b) = (αb+ 1)[(1 + ρ)− (1 + ρ− β)b],8b ≤
R̄− 1
α

and Z(b) = R̄[(1 + ρ)− (1 + ρ− β)b],8b >
R̄− 1
α

.

Thus

Z
0
(b) = α[(1 + ρ)− 2(1 + ρ− β)b]− (1 + ρ− β),8b ≤

R̄− 1
α

and Z
0
(b) = −(1 + ρ− β)R̄,8b >

R̄− 1
α

.

Thus, Z 0 ≤ 0 for b ≥ R̄−1
α . For b ≤ R̄−1

α , Z 0 ≥ 0 if and only if

α(1 + ρ)− (1 + ρ− β)
2(1 + ρ− β)

≥ αb.

This holds for all b ≤ R̄−1
α , if

α(1 + ρ)− (1 + ρ− β)
2(1 + ρ− β)

≥ R̄− 1.

That is
1 + ρ

(1 + ρ− β)
≥
2R̄− 1
α

,

i.e., (10) holds. Hence, (10) implies b∗ = R̄−1
α .

Proof of Lemma 2: Ω is non-empty because b∗ 2 Ω. Indeed

Z(b∗) ≥ max[R(b∗t−1)(1− b
∗
t−1) + ρmax[R(b

∗)(1− b∗), ρR(b∗t+1)(1− b
∗
t+1)]− ϵ(1 + ρ), Z(b

∗
t )− ϵ],

since Z(b) is decreasing in b for b ≥ b∗. Ω is compact. This compact subset of the real line has a

unique maximum, bt, which defines the unique solution of the maximisation program of the agent.

If bt 6= bmax, it must be that bt < bmax. If (18) did not hold, this would imply that the left—hand

side of (18) would be strictly above its right-hand side. This strict inequality would by continuity

extend to a neighbourhood of bt included in [0, bmax], which would contradict the fact that bt is the

maximum of Ω. So, either bt = bmax, or bt solves (18).

QED

Proof of Lemma 4: By Lemma 3, if b is to decrease between t − 1 and t, i.e., b∗t < b∗t−1, we

must have b∗t+1 < b
∗
t . Then, as long as b ≤ bmax, (20) is

R(b∗t )(1 + ρ)(1− b
∗
t ) + βb

∗
tR(b

∗
t ) = R(b

∗
t−1)(1− b

∗
t−1) + ρR(b

∗
t+1)(1− b

∗
t+1)− ϵ(1 + ρ). (39)
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Denote g(bt) = R(bt)(1− bt). In terms of g, (39) writes as

g(b∗t )(1 + ρ) + βb
∗
tR(b

∗
t ) = g(b

∗
t−1) + ρg(b

∗
t+1)− ϵ(1 + ρ).

That is

g(b∗t ) =
g(b∗t−1) + ρg(b

∗
t+1)

1 + ρ
−
βb∗tR(b

∗
t )

1 + ρ
− ϵ(1 + ρ). (40)

Since
g(b∗t−1) + ρg(b

∗
t+1)

1 + ρ
−
βb∗tR(b

∗
t )

1 + ρ
− ϵ(1 + ρ) <

g(b∗t−1) + ρg(b
∗
t+1)

1 + ρ
,

we have

g(b∗t ) <
g(b∗t−1) + ρg(b

∗
t+1)

1 + ρ
.

By Jensen inequality (as g is concave and decreasing), this implies

b∗t >
b∗t−1 + ρb

∗
t+1

1 + ρ
,

that is

b∗t − b
∗
t+1 >

1

ρ
(b∗t−1 − b

∗
t ).

Because 1
ρ > 1, This implies that, as t goes to infinity, b∗t − b∗t+1 goes to plus infinity, which, since

b∗t ≤ bmax, implies b∗t+1 goes to minus infinity, a contradiction since b ≥ 0.

QED

Proof of Corollary 1: (21) rewrites as

R(b∗t )

R(b∗t−1)
= (

1− b∗t−1
1− (1− β)b∗t

)−
ϵ(1 + ρ)

[1− (1− β)b∗t ]R(b∗t−1)
. (41)

Proposition 1 implies that the left—hand side of (41) is larger than one. Hence (41) implies

(
1− b∗t−1

1− (1− β)b∗t
)−

ϵ(1 + ρ)

[1− (1− β)b∗t ]R(b∗t−1)
≥ 1,

which, in turn yields (22).

QED
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Proof of Corollary 2: In the simple example, for b ≥ b∗, (21) simplifies to

b∗t =
b∗t−1
1− β

+
ϵ(1 + ρ)

(1− β)R̄
.

Thus, as ϵ goes to 0, we get (26).

QED

Proof of Lemma 5: W (b) decreases with b, 8b > b∗. 8b ≤ b∗, W (b) increases with b if

(1 + β)α ≥Mc. This is implied by our assumption that R(b∗) ≥Mc, if

(1 + β)α ≥ R(b∗) = R̄.

Now, since β = ρ, condition (10) simplifies to

α(1 + β) ≥ 2R̄− 1.

Hence, W (b) increases with b if

R̄ ≥ 1,

which holds. Hence, W (b) increases with b, and b∗∗ = b∗.

QED

Proof of Proposition 5:

To prove Proposition 5, we first characterize the equilibrium dynamics of bkT+t, over a cyclical

intervention regime where the regulator resets b to b ≥ b∗ every T periods (we will conditions under

which such cycle dominates both laissez-faire and permanent monitoring). We then study the condition

under which the agent complies after T periods. Finally we compare W (1) (welfare under permanent

monitoring) and W (1) (welfare under laissez-faire) to W (T ), for T finite and larger than 2. A series

of technical lemmas are needed to complete the proof. We directly assume ϵ ! 0 in formulas and

reasoning where ϵ plays no role but explicitly introduce ϵ at intermediary steps where it plays a role

in the determination of the equilibrium.

Lemma 6: Consider a policy that resets b to b with periodicity T . The dynamics of bt is described

by:

bkT+n = min(
bkT+n−1
1− β

, bmax) = min

(
b

(1− β)n
, bmax

)
,8n 2 {1, ...T − 2}, if T > 2,
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while

b(k+1)T−1 = min(b(k+1)T−2 + βb, bmax) = min

(
(

1

(1− β)T−2
+ β)b, bmax

)
.

Proof of Lemma 6:

Assume for now that bmax is not reached during the cycle. First consider the case T > 2. At

time t = kT + n, where n 2 {1, ...T − 2}, no monitoring happens, so that the analysis is similar to

our benchmark case: a generic young manager from generation t chooses the highest possible bit at

which she is still employable. Assume this does not bind bmax. Following the same reasoning as in the

previous analyses, binding the employability constraint, yields

R̄(1 + β)− btR̄ = R̄(1 + β)− bt−1R̄− βmin[bt, bt+1]R̄,

which, simplifies to

R̄(1 + β)− btR̄ = R̄(1 + β)− bt−1R̄− βbtR̄.

Thus

bt =
bt−1
1− β

.

This implies

bkT+n =
bkT+n−1
1− β

,8n 2 {1, ...T − 2}.

For the last generation before regulatory intervention, t = (k+1)T −1, things are slightly di§erent

since a young manager anticipates that bt+1 = b. Hence, given his expectation bt on the behavior of

his contemporaneous peers, a manager i in that generation chooses bit such that

R̄(1 + β)− bitR̄ = max[R̄(1 + β)− bt−1R̄− βbR̄− (1 + ρ)ϵ, R̄(1 + β)− btR̄− ϵ].

bit = min[bt−1 + βb+ ρϵ/R̄, bt] + ϵ/R̄.
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In equilibrium, bit = bt , which prevents bt to be the argmin in the expression above at equilibrium,

and thus (applying ϵ! 0):

bt = bt−1 + βb.

Since t− 1 = kT + T − 2, bt−1 = b
(1−β)T−2 . Thus we have

bt = (
1

(1− β)T−2
+ β)b. (42)

Second, consider the case T = 2. At t = 1, we have b1 = b, at t = 2, we have b2 > b, ... b2 binds

the employability constraint:

b2 = min[b1 + βb, b2] + (1 + β)ϵ/R̄.

Hence (applying ϵ! 0):

b2 = (1 + β)b, (43)

which is consistent with (42) evaluated at T = 2.

In the lemma, we allow for the possibility that bmax is reached during the cycle. This means that

bkT+n ≤ bmax is also part of the employability constraints that can bind, hence the min in the formulas.

QED

Now, turn to the monitoring probability ensuring compliance. At the time of intervention, t = kT ,

the regulator sets the desired level of complexity below the previous level, i.e., b < bt−1. Consider a

generic agent i from generation t. If he complies, he gets

bR̄.

If he deviates, he chooses the maximum level of complexity at which he is still employed, i.e., bit such

that

R̄(1 + β)− bitR̄ = max{R̄(1 + β)− b
∗
t−1R̄− βmin[bt, bt+1]R̄− (1 + β)ϵ, R̄(1 + β)− btR̄− ϵ}. (44)

Where bt are the expectations of agen i about the behavior of other members of his generation

and bt+1 his expectations on the behavior of the next generation. b∗t−1 is the equilibrium level of

opacity of the generation just prior to monitoring time, which we already computed. We look for an
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intensity of monitoring that implements "robust compliance", i.e. we want compliance to happen even

if agents expect that their contemporaneous and future peers deviate to the highest feasible deviation

bt compatible with optimisation. This highest (collective) deviation bt is given for generation t by the

equation:

R̄(1 + β)− btR̄ = R̄(1 + β)− bt−1R̄− βmin[bt, bt+1]R̄− (1 + β)ϵ. (45)

This is because if this equation did not hold, then the individual deviation bit defined above would be

determined by the comparison to current generations, R̄(1+β)− b̂R̄ = R̄(1+β)− btR̄− ϵ, such that bit

> bt, which would allow us to consider a strictly higher rational deviation of the rest of generation t,

namely bt = bit, in contradiction with the definition of bt as the highest feasible deviation. Moreover,

since generation t+1 is not monitored and since we assume future generations that are monitored do

not comply, we have bt ≤ bt+1.

Now, the definition of the highest (collective) feasible deviation bt simplifies to

bt =
b∗t−1
1− β

. (46)

Looking for robust monitoring, the regulator will choose the lowest possible level of monitoring ensuring

compliance, so that an equilibrium where agents all start to deviate at some point is excluded. Equation

(28) pins down θ as the solution of:

b = (1− θ)(
b∗t−1
1− β

)

Lemma 7: for a given b, longer cycles imply weakly higher monitoring expense at the time of

reset, i.e. θ(T ) ≤ θ(T + 1).

Proof of Lemma 7:

Noting bkT+i(T ) the equilibrium path on a T -cycle of length T and reset at b , from Lemma 5, we

know that bkT−1(T ) ≤ bk(T+1)−1(T + 1) , from which we conclude that θ(T ) ≤ θ(T + 1).

QED

This allows us to now characterize further policies that cannot be optimal in the set of cyclical

policies. This is useful later in establishing proposition 3.
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Lemma 8: A periodic robust monitoring policy of period T that is optimal among cyclical policies

(including laissez-faire) must be such that b(k+1)T−1 < bmax .

Proof of Lemma 8:

Consider a periodic robust monitoring policy such that bT−1 = bmax and bT = b. We are going

to show that it is dominated by either laissez faire or by the periodic monitoring policy with period

T − 1.

Either W (T ) ≤ W (1), and the lemma is true, or W (T ) > W (1). Consider the latter case.

We want to establish that W (T − 1) > W (T ) . We can explicit welfare over the cycle of length

T with reset at b as follows: W (T ) = R̄(1 + β) − cMbaverage(T ) − γ
T θ(T ) where baverage(T ) is the

average of b over the cycle. The (T − 1)−cycle with starting point b has an identical dynamics of

b as the cycle of length T along the first (T − 2) periods , a weakly lower b at period T − 1 (a

consequence of lemma 5) and a smaller cost of monitoring (θ(T − 1) 6 θ(T ) from Lemma 6). Thus,

we have baverage(T − 1) 6 baverage(T ), such that: W (T ) 6 T−1
T W (T − 1) + 1

TW (1). This implies

W (T − 1) > W (T ) because we know that W (T ) > W (1).

QED

To finally estimate welfare over cycles of various lengths, we need to compute the monitoring costs

associated to them. This is what the following lemma does:

Lemma 9: To ensure compliance with periodic robust monitoring, under an optimal periodic

monitoring cycle of period T , the regulator sets the monitoring probability to:

θT = 1−
1− β

( 1
(1−β)T−2 + β)

.

Proof of Lemma 9:

From lemma 7, we know that we can consider that bmax is not reached during the cycle.

b = (1− θ)(
b∗t−1
1− β

) =
1− θ
1− β

(
1

(1− β)T−2
+ β)b

θ = 1−
1− β

( 1
(1−β)T−2 + β)

Thus, for T = 2, we have

θ =
2β

1 + β
.
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Thus, whether T = 2 or T > 2, the monitoring cost is independent of the chosen reset level b.

QED

We can now compute welfare over a cycle that does not reach bmax, which yields the following

lemma:

Lemma 10: Average welfare under a periodic robust monitoring cycle of period T = 2 resetting

b to b, is:

R̄(1 + β)−
1 + (1 + β)

2
Mcb−

1

2
(
2β

1 + β
)γ. (47)

Proof of Lemma 10:

Given T = 2, we computes welfare over two periods where bt oscillates between the two values b

and (1 + β)b.

QED

We now compare welfare under periodic robust monitoring to its counterpart under permanent

monitoring and under laissez faire. The next proposition states a preliminary result.

Lemma 11: Assume bmax ≥ (1 + β)b∗.Welfare under monitoring with T = 2 and reset at b∗ is

larger than welfare under laissez faire and than welfare under permanent monitoring i§:

1 + β

β
Mcb∗ < γ <

1 + β

β
Mc(bmax − (1 +

β

2
)b∗).

Proof of Lemma 11:

(47) is greater than (34), i§

1 + (1 + β)

2
Mcb∗ +

β

1 + β
γ < Mcbmax. (48)

That is

γ <
1 + β

β
Mc(bmax − (1 +

β

2
)b∗).

Note that the right—hand—side of is positive, since bmax ≥ (1 + β)b∗.

(47) is greater than (35), i§

R̄(1 + β)− (
1 + (1 + β)

2
Mcb∗ +

β

1 + β
γ) > R̄(1 + β)− (cMb∗ + βγ)
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that is:

γ >
1 + β

β
Mcb∗

This completes the proof of proposition 5, by choosing γ1 =
1+β
β Mcb∗ and γ2 =

1+β
β Mc(bmax −

(1 + β
2 )b

∗), a 2-cycle being a particular case among cycles. Indeed, γ1 < γ2 as soon as

bmax/b
∗ > (1 +

β

2
)

which is implied by our assumption bmax ≥ (1 + β)b∗.

QED
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Figure 1: time line during period t for generation born at time t
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Figure 2: A simple example
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