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1. Introduction

Financial markets play a key role in facilitating risk sharing and efficient allocation of
assets among investors. However, trading in financial assets often entails moral hazard
due to investors’ incentives to default on their risky positions. The moral hazard can be
alleviated by collateralized trades whereby risky positions are backed by financial capital
that can be seized in the event of default. The latter arrangement restores the functionality
of the financial markets at a cost of restricting risk sharing among investors. In this
paper, we develop a parsimonious model which sheds light on the economic effects of such
restrictions on asset prices, their moments, and the distribution of consumption and wealth
in the economy. Our analysis is facilitated by closed-form solutions of the model and the
stationarity of equilibrium processes.

We consider a pure exchange economy with one consumption good produced by a
tree, similar to Lucas (1978). The economy is populated by two representative investors
with heterogeneous constant relative risk aversion (CRRA) preferences over consumption
and heterogeneous beliefs about the growth rate of the output. Each investor receives a
fraction of the tree’s output as labor income and invests total wealth in financial assets
such as bonds and stocks. The investors have limited liability and can re-enter the financial
market following defaults on debt and short positions in financial assets. In the event of
default the financial assets can be seized by counterparties but labor income cannot be
expropriated. The arising moral hazard problem is resolved by requiring risky positions
to be backed by collateral in such a way that each investor’s total financial wealth stays
positive at all times, and hence, investors can always pay back to counterparties. We label
the latter constraint as collateral requirement.

The aggregate consumption growth rates are independent and identically distributed
(i.i.d.) but may occasionally experience large negative transitory shocks during low-
probability production crises in the economy. These shocks help us explore how mere
anxiety about the possibility of a production crisis affects the economy by making collat-
eral requirements binding. We solve the model in closed form for general risk aversions and
beliefs, and explore the effects of collateral requirements on interest rates, Sharpe ratios,
price-dividend ratios, stock return volatilities, and distributions of investors’ consumption
shares in the aggregate output. The advantage of closed-form model solutions over numer-
ical solutions in the related literature (discussed below) is that they help us establish our
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qualitative results for general model parameters rather than for particular calibrations.

Our main results are as follows. First, we show that mere possibility of a large (albeit
unpredictable) drop in the aggregate output next period decreases interest rates and in-
creases Sharpe ratios in the current period when the irrational optimist is close to hitting
the collateral constraint. The latter effect only occurs when production crises and collat-
eral requirements are jointly present in the economy. Hence, the collateral requirements
amplify the spillover of the production crisis to the financial market. The amplification
effect arises because investors “fly to quality” by buying riskless bonds when there is a
possibility of hitting the collateral constraint next period.

Next, we show that the collateral requirements increase stock price-dividend ratio rela-
tive to the unconstrained benchmark. The effects of constraints are stronger when investors
are close to their default boundaries, which makes price-dividend ratio a U-shaped func-
tion of one of the investor’s share of the aggregate consumption. The price-dividend ratio
spikes upwards in response to small economic shocks near default boundaries giving rise
to cycles of inflating and deflating stock prices in the economy.

Our intuition for the results on price-dividend ratios is as follows. Absent any fric-
tions, the investors’ consumption shares gradually approach zero or one and, accordingly,
the economic impact of one of the investors vanishes in the long-run (e.g., Blume and
Easley, 2006; Yan, 2008; Chabakauri, 2015). The collateral requirements restrict financial
losses and protect investors from losing their consumption shares. The result is that the
consumption shares are bounded away from zero and one. Moreover, the constraints never
bind simultaneously for both investors, and at each moment one of the investors is uncon-
strained. The unconstrained investor’s marginal utility of consumption is proportional to
the prices of Arrow-Debreu securities. This marginal utility is expected to be higher in the
economy with constraints because the unconstrained investor’s consumption is expected to
be lower than in the unconstrained economy due to the upper bound on the consumption
share, discussed above. Consequently, the prices of Arrow-Debreu securities, and hence,
also the stock price, are higher in the constrained economy. The stock has an additional
collateral value (in contrast to labor income), which further inflates its price.

The dynamics of the price-dividend ratio determines the effect of constraints on volatil-
ities. We show that collateral requirements dampen volatilities in bad times, when aggre-
gate consumption is low, and amplify them in good times, when aggregate consumption
is high. The latter effect makes collateral requirements a useful tool for curbing excessive
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volatility in bad times. The explanation is that the U-shape makes price-dividend ratio
procyclical in good and countercyclical in bad times. As a result, the price-dividend ratio
and the dividend move in the same direction in good times and in opposite directions in
bad times. Because the stock price is the product of the price-dividend ratio and the div-
idend, stock return volatility increases in good times and decreases in bad times. We find
that the volatility exhibits clustering and is sensitive to economic shocks when investors
are close to hitting their constraints, which gives rise to spikes and crashes of volatility.

We also derive the distributions of investors’ consumption shares in analytic form and
show that they are stationary and non-degenerate (i.e., their support is a closed interval
rather than a single point). The analysis of these distributions yields three important
economic results. First, there is non-trivial time-variation of asset prices in the long run.
Second, periods of binding collateral requirements are persistent. Third, all investors,
including those with incorrect beliefs, survive in the long run and can have large economic
impact in equilibrium. The survival is due to the fact that the constraints prevent investors
from losing their consumption shares. The non-degeneracy arises because investors can
accumulate labor income and re-enter the asset markets if shocks are favorable. The
survival of investors in markets with frictions has been known before (e.g., Blume and
Easley, 2006). However, the non-degeneracy of consumption share distributions and the
persistence of the periods of binding constraints are more difficult to demonstrate and, to
our best knowledge, are new to the literature.

Finally, we measure the collateral liquidity premium of the stock versus labor income
due to the fact that the stock can be used as collateral. Because labor incomes are non-
tradable, first, we derive shadow prices of claims to labor incomes such that exchanging
marginal units of these claims for the consumption good at shadow prices does not affect
investors’ welfare. Then, we construct portfolios of stocks that replicate labor incomes.
Such portfolios exist because labor incomes and stock dividends are proportional in our
model. We define the collateral liquidity premium for the stock as the percentage difference
in the value of the replicating portfolio and the shadow price. Absent any frictions, this
premium is zero. The premium from the view of a particular investor widens close to that
investor’s default boundary and ranges from 0% to 35% in our calibration.

The paper develops new methodology for studying the effects of collateral require-
ments. This new methodology allows us to obtain closed-form equilibrium processes and
prove their properties which previously could only be studied numerically. For example,
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we prove that collateral requirements always increase price-dividend ratios and generate
spikes in asset prices, and lead to non-degeneracy and stationarity of consumption share
distributions. Hence, collateralization emerges as a tractable way of inducing the station-
ary of equilibrium. Finally, the paper introduces a tractable discrete-time framework that
makes exposition less technical and permits taking continuous-time limits. The tractabil-
ity and stationarity make our model a convenient benchmark for asset pricing research
that can be extended in various directions.

Related Literature. Closest to us are papers that study economies where investors
have limited liability and face solvency constraints. Deaton (1990) considers a partial
equilibrium model in which investors trade in a riskless asset with an exogenous interest
rate and face a non-negativity constraint on their financial wealth. Detemple and Serrat
(2003) also study the non-negative wealth constraint in a model where investors have
heterogeneous beliefs and identical risk aversions. They show that the interest rates and
Sharpe ratios are affected by the constraint only at the boundaries of the state-space. They
do not solve for price-dividend ratios and volatilities as we do in this paper. Moreover, in
our paper the constraint has an effect on interest rates and Sharpe ratios in the internal area
of the state-space when there are rare production crises in the economy. Chien and Lustig
(2010) study a similar constraint in an economy with a continuum of ex ante identical
investors that receive non-pledgeable labor incomes affected by idiosyncratic shocks. Lustig
and van Nieuwerburg (2005) study the role of housing collateral when labor income is
non-pledgeable. The main difference of our paper from the latter two papers is that our
investors are ex ante heterogeneous and are not affected by idiosyncratic shocks to labor
income. The economic effects of heterogeneity in preferences and beliefs are different from
the effects of ex-post heterogeneity in realized idiosyncratic labor income shocks in the
above literature. For example, Krueger and Lustig (2010) show the irrelevance of market
incompleteness induced by these income shocks for the risk premia.

Related works with similar constraints include Geanakoplos (2003, 2009), Fostel and
Geanakoplos (2008, 2014), and Blume et al (2015), among others. Compared to the latter
models, our constraint is more tractable, investors are heterogeneous both in preferences
and beliefs, and there are rare crises in the economy. Hence, we get new predictions on
the effects of collateral requirements on asset prices. Cao (2017) shows that investors
with incorrect beliefs have strictly positive shares of consumption in the long run (i.e.,
survive in the long-run) in economies with collateral constraints and stationary endowment
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processes bounded away from zero. In contrast to Cao (2017), our dividends follow a
geometric Brownian motion, which is non-stationary and can become arbitrarily close to
zero. Moreover, we not only show the survival of investors, but also derive consumption
share distributions in closed form and prove that these distributions are stationary and
non-degenerate, i.e., their support is a closed interval rather than a single point.

Kehoe and Levine (1993), Kocherlakota (1996), and Osambela (2015) study economies
with participation constraints where investors are weakly better off not defaulting and
are permanently excluded from securities markets if they default. Alvarez and Jermann
(2000) show that such constraints can be implemented by imposing certain “not too tight”
solvency portfolio constraints. Alvarez and Jermann (2001) find that such constraints help
explain equity premia in the U.S. economy. They solve a simple example in closed form
and develop a numerical method for the general case. In contrast to this literature, our
investors have limited liability and can re-enter the market after a default.

Our constraint restricts borrowing and short-selling in equilibrium. Consequently, the
paper is related to the literature on economic effects of borrowing, margin, short-sale and
position limit constraints (e.g., Harrison and Kreps, 1978; Detemple and Murthy, 1997;
Basak and Cuoco, 1998; Basak and Croitoru, 2000, 2006; Gromb and Vayanos, 2002, 2010;
Pavlova and Rigobon, 2008; Brunnermeier and Pedersen, 2009; Gârleanu and Pedersen,
2011; Buss et al, 2013; Chabakauri, 2013, 2015; Rytchkov, 2014; Brumm et al, 2015),
portfolio insurance (e.g., Basak, 1995) and VaR constraints (e.g., Basak and Shapiro,
2001). The constraints in this literature can increase or decrease stock prices depending on
whether the investors’ risk aversions are greater or less than one (e.g., Chabakauri, 2015).
The equilibrium with these constraints and CRRA investors is characterized in terms of
non-linear differential equations that can only be solved numerically (e.g., Chabakauri,
2013, 2015; Rytchkov, 2014). In contrast to the above literature, we use a different
methodology that allows us to find the equilibrium in closed form. Our economic results
are also significantly different. In particular, our collateral requirements always increase
stock prices irrespective of risk aversions and beliefs. They also generate new effects such
as spikes and crashes of volatilities and stock prices, and clusters of volatility. Another
innovation is that we allow for rare production crises which interact with the collateral
constraints and have significant effects on equilibrium.

The paper is also related to macro-finance, financial intermediation, and banking liter-
atures that study economies with frictions (Kiyotaki and Moore, 1997; Brunnermeier and
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Figure 1
States of the Economy
After time t the economy moves to a normal state with probability 1− λ∆t and to a crisis state
with probability λ∆t. Conditional on being in a normal state the economy moves to either ω1 or
ω2 with equal probabilities.

Sannikov, 2014; Kondor and Vayanos, 2015; Klimenko, Pfeil, Rochet, and De Nicolo, 2016)
and to the literature on frictionless economies with heterogeneous investors (e.g., Basak,
2005; Chan and Kogan, 2002; Yan, 2008; Xiong and Yan (2009); Bhamra and Uppal, 2014;
Borovička, 2015, among others).

2. Economic setup

We consider a pure-exchange infinite-horizon economy with one consumption good pro-
duced by an exogenous Lucas (1978) tree. The economy is populated by two representative
heterogeneous investors A and B that hold shares in the tree and receive labor income
each period. To facilitate the exposition, we start with a discrete-time economy with dates
t = 0,∆t, 2∆t, . . ., and later take a continuous-time limit.

At each point of time t = 0,∆t, 2∆t, . . . the economy is in one of the three states: ω1,
ω2, and ω3. With probability 1− λ∆t the economy is either in state ω1 or state ω2, which
we call normal states, and with probability λ∆t in state ω3, which we call the crisis state.
Parameter λ > 0 is the crisis intensity. States ω1 and ω2 have probabilities 1/2 conditional
on the economy being in a normal state. Figure 1 depicts the structure of uncertainty.

2.1. Aggregate output and securities markets

At date t the tree produces Dt∆t units of aggregate output, where Dt follows a process

∆Dt = Dt[µD∆t+ σD∆wt + JD∆jt], (1)
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where µD ≥ 0, σD > 0, and JD ≤ 0 are output growth mean, volatility, and drop during
a crisis, respectively, and ∆Dt = Dt+∆t − Dt is the change in output. Processes wt and
jt are discrete-time analogues of a Brownian motion and Poisson processes, respectively.1

These processes follow dynamics wt+∆t = wt+∆wt and jt+∆t = jt+∆jt, where increments
∆wt and ∆jt are i.i.d. random variables given by:

∆wt =


+
√

∆t, in state ω1,

−
√

∆t, in state ω2,

0, in state ω3,

∆jt =


0, in state ω1,

0, in state ω2,

1, in state ω3.

(2)

It can be easily verified that Et[∆wt|normal] = 0 and vart[∆wt|normal] = ∆t, similar to
a Brownian motion, where Et[·] and vart[·] are expectation and variance conditional on
time-t information. Parameters µD, σD, and JD are such that Dt > 0 for all t.

The economy is populated by two representative price-taking investors A and B. Each
investor stands for a continuum of identical investors of unit mass. Fractions lA and
lB of the aggregate output Dt∆t are paid to investors A and B as their labor incomes,
respectively. Labor incomes are non-tradable. Fractions lA and lB can be also interpreted
as non-tradable shares in the aggregate output such as holdings of illiquid assets. The
remaining fraction 1− lA − lB is paid as a dividend to the shareholders.

The investors can trade three securities at each date t: 1) a riskless bond in zero net
supply, which pays one unit of consumption at date t + ∆t; 2) one stock in net supply of
one unit, which is a claim to the stream of dividends (1 − lA − lB)Dt∆t; 3) a one-period
insurance contract in zero net supply, which pays one unit of consumption in the crisis
state ω3 and zero otherwise. Absent any frictions the market is complete. Bond, stock,
and insurance prices Bt, St, and Pt, respectively, are determined in equilibrium.

2.2. Investor heterogeneity and optimization problems

The investors have heterogeneous CRRA preferences over consumption, given by

ui(c) =


c1−γi

1− γi
, if γi 6= 1,

ln(c), if γi = 1,
(3)

1Chabakauri (2014) shows that process (1) converges to a continuous-time Lévy process as ∆t→ 0.
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where i = A,B. The investors agree on time-t asset prices and the aggregate output but
disagree on the probabilities of states. Investor A is rational and has correct probabilities

πA(ω1) = 1− λ∆t
2 , πA(ω2) = 1− λ∆t

2 , πA(ω3) = λ∆t, (4)

where λ is such that probabilities (4) are positive. Investor B has biased probabilities

πB(ω1) = 1− λB∆t
2 (1 + δ

√
∆t), πB(ω2) = 1− λB∆t

2 (1− δ
√

∆t), πB(ω3) = λB∆t, (5)

where crisis intensity λB and disagreement parameter δ are such that probabilities (5) are
positive. It is immediate to verify that πB(ω1) + πB(ω2) + πB(ω3) = 1, and hence, πB(ω) is
a probability measure. Throughout the paper, by Eit[·] and varit[·] we denote conditional
expectations and variances under the probability measure of investor i.

It can be easily verified that time-t conditional expected output growth rate in normal
times under the beliefs of investor B is given by:

EB

t

[
∆Dt

Dt

∣∣∣normal
]

= (µD + δσD)∆t, (6)

Therefore, parameter δ measures the extent of the investor disagreement about the ex-
pected output growth during normal times. For tractability, we assume that investor B
does not update probabilities over time. We also assume that investor B is weakly less
risk averse and more optimistic than investor A: γA ≥ γB, λ ≥ λB and δ ≥ 0. The as-
sumption that the less risk averse investor is also more optimistic is imposed to simplify
the exposition and does not affect the qualitative results in the paper.2 We allow for the
heterogeneity in both risk aversions and beliefs for generality. Main qualitative results do
not change if we keep only one source of heterogeneity.

At date 0 the investors have certain endowments of financial assets. The total time-t
disposable wealth of investor i is given by Wit + liDt∆t, where Wit is the financial wealth,
defined as the time-t value of all positions in financial assets acquired at the previous date,
and liDt∆t is the labor income. At date t, investor i allocates wealth to cit∆t units of
consumption, bit units of bond, and a portfolio of risky assets nit = (ni,St, ni,P t), where ni,St
and ni,P t are units of stock and insurance, respectively. The bond and the risky assets are
pledgeable, i.e., can be used as collateral, but the labor income is not.

2Assuming that the less risk averse investor is more optimistic makes our main state variable st =
c∗

At/Dt (introduced in Section 2.3 below) countercyclical, which facilitates the analysis of the results. If
this assumption is relaxed, the qualitative results remain the same, but additional analysis is required to
determine whether the state variable s is counter- or pro-cyclical.
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In a frictionless economy, the financial wealth Wit can become negative when investors
take risky positions backed by their future labor income. However, we assume that labor
income is not pledgeable, and the investors can default when their financial wealth becomes
negative. The investors also have limited liability and can re-enter the market after default,
which gives rise to a moral hazard problem, similar to the related literature (e.g., Chien
and Lustig, 2010; Geanakoplos, 2009). This problem is addressed here by requiring the
investors to keep their next-period financial wealth Wi,t+∆t positive at all times, so that
their pledgeable capital is sufficient to cover all liabilities such as debt and short positions.

Investor i = A,B maximizes expected discounted utility with time discount ρ

max
cit,bit,nit

Eit

[
∞∑
τ=t

e−ρτui(ciτ )∆t
]
, (7)

subject to the self-financing budget constraints, given by

Wit + liDt∆t = cit∆t+ bitBt + nit(St, Pt)>, (8)

Wi,t+∆t = bit + nit
(
St+∆t + (1− lA − lB)Dt+∆t∆t, 1{ωt+∆t=ω3}

)>
, (9)

and the collateral constraint:
Wi,t+∆t ≥ 0, (10)

where Wi,t+∆t is the financial wealth at date t + ∆t given by equation (9). Constraint
(10) requires investors to cross-collateralize their positions in such a way that losses on
one position are always offset by gains on the other positions.

Remark 1 (Partially pledgeable labor income). Our model can be easily extended
to economies where fraction ki ∈ [0, 1] of investor i’s labor income can be pledged. The
requirement to keep next-period pledgeable wealth is then given by:

Wi,t+∆t + kili
1− lA − lB

(
St+∆t + (1− lA − lB)Dt+∆t∆t

)
︸ ︷︷ ︸

measure of pledgeable labor income

≥ 0. (11)

The second term in constraint (11) measures the value of the pledgeable income. Let
kiliDt∆t be the pledgeable income of investor i. This income is proportional to stock
dividends (1− lA − lB)Dt∆t, and hence, can be replicated by a portfolio of n̂i = kili/(1−
lA − lB) units of stock with cum-dividend value n̂i(St + (1− lA − lB)Dt∆t). The investors
can circumvent the non-tradability of pledgeable income by shorting stocks against this
income. Hence, the claims to pledgeable income are, effectively, tradable and have the same
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value as the replicating portfolio. The requirement to have positive pledgeable wealth then
becomes Wi,t+∆t + n̂i

(
St+∆t + (1− lA− lB)Dt+∆t∆t

)
≥ 0, which is equivalent to constraint

(11). Lemma A.1 in the Appendix shows that models with ki 6= 0 reduce to models with
ki = 0 by a change of variable. Hence, the economic implications of our baseline model
with constraint (10) and the model with a more general constraint (11) are the same.

2.3. Equilibrium

Definition. An equilibrium is a set of asset prices {Bt, St, Pt} and of consumption and
portfolio policies {c∗it, b∗it, n∗it}i∈{A,B} that solve optimization problem (7) for each investor,
given processes {Bt, St, Pt}, and consumption and securities markets clear:

c∗At + c∗Bt = Dt, b∗At + b∗Bt = 0, n∗A,St + n∗B,St = 1, n∗A,P t + n∗B,P t = 0. (12)

In addition to asset prices, we derive price-dividend and wealth-aggregate consumption
ratios Ψ = S/

(
(1 − lA − lB)D

)
and Φi = W ∗

i /D, respectively. We also derive annualized
∆t-period riskless interest rates rt, stock mean-returns µt and volatilities σt in normal
times, and the percentage change of the stock price in the crisis state, denoted by Jt.

We derive the equilibrium in terms of state variable vt given by the log-ratio of marginal
utilities of investors evaluated at their shares of the aggregate consumption c∗it/Dt:

vt = ln
(

(c∗At/Dt)−γA
(c∗Bt/Dt)−γB

)
. (13)

Substituting consumption shares of investors A and B, denoted by st = c∗At/Dt and 1−st =
c∗Bt/Dt, into equation (13), we express vt as a function of st:

vt = γB ln(1− st)− γA ln(st). (14)

Variable vt is a decreasing function st, and hence, st is an alternative state variable.

We assume that the process for the aggregate consumption is such that the investors’
value functions evaluated at aggregate consumption are finite:

E0

[
∞∑
τ=0

e−ρτui(Dτ )∆t
]
< +∞. (15)
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3. Characterization of equilibrium

First, we derive the investors’ state price densities (SPD) ξAt and ξBt. Then, we find asset
prices from the following standard equations of asset pricing (e.g., Duffie (2001, p.23)):

Bt = Eit
[ξi,t+∆t

ξit

]
, (16)

St = Eit
[ξi,t+∆t

ξit

(
St+∆t + (1− lA − lB)Dt+∆t∆t

)]
, (17)

Pt = Eit
[ξi,t+∆t

ξit
1{ωt+∆t=ω3}

]
, (18)

where i = A,B. The state price density ξit exists for each investor i due to the absence
of arbitrage opportunities in our economy.3 The investors can eliminate arbitrage because
strategies with zero investment and non-negative payoffs are feasible given constraints (8)–
(10). To ensure the uniqueness of SPD ξit for each investor i, we assume and later verify
that the matrix of asset payoffs is invertible in equilibrium. The SPDs ξAt and ξBt differ
due to heterogeneity in beliefs and are linked by the change of measure equation4

ξB,t+∆t

ξBt
= ξA,t+∆t

ξAt

πA(ωt+∆t)
πB(ωt+∆t)

. (19)

We find the SPDs from the first order conditions in terms of investors’ marginal utilities
of consumption and Lagrange multipliers for collateral requirements (10). First, we rewrite
the budget equations (8)–(9) in a static form that expresses the current wealth in terms
of current consumption and the expected discounted future wealth (e.g., Cox and Huang,
1989). Then, we solve investor optimizations by dynamic programming and the method
of Lagrange multipliers. Lemma 1 below reports the results.

Lemma 1 (Dynamic programming and the first order condition).

1) Let Vi(Wit, vt; li) denote the value function of investor i, where vt is the state variable.
Then, the value function solves the following Hamilton-Jacobi-Bellman equation:

Vi(Wit, vt; li) = max
cit

{
ui(cit)∆t+ e−ρ∆tEit[Vi(Wi,t+∆t, vt+∆t; li)]

}
, (20)

subject to the static budget and collateral constraints:

Wit + liDt∆t = cit∆t+ Eit

[
ξi,t+∆t

ξit
Wi,t+∆t

]
, (21)

3The proof of existence of the SPD in arbitrage-free economies can be found in Duffie (2001, p.4).
4Three equations (16)–(18) can be rewritten as equations for three unknowns πi(ωk)ξi,t+∆t(ωk)/ξit,

where k = 1, 2, 3 and i is set to either A or B. The solution of these equations is unique when the matrix
of asset payoffs is invertible, and hence, πB(ωt+∆t)ξB,t+∆t/ξBt = πA(ωt+∆t)ξA,t+∆t/ξAt for all states.
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Wi,t+∆t ≥ 0. (22)

2) Value function Vi(Wit, vt; li) is a concave function of wealth Wit.

3) The SPDs ξit and optimal consumptions c∗it satisfy the first order conditions

ξi,t+∆t

ξit
= e−ρ∆t (c∗i,t+∆t)−γi + `i,t+∆t

(c∗it)−γi
, (23)

where `i,t+∆t ≥ 0 is the Lagrange multiplier for collateral requirement (22) satisfying the
complementary slackness condition `i,t+∆tW

∗
i,t+∆t = 0.

We use Lemma 1 to derive the dynamics of state variable vt. First, suppose constraints
do not bind. In this case, Lagrange multipliers `i,t+∆t vanish and the first order conditions
(23) are the same as in the unconstrained economy. The dynamics of the state variable
vt in the unconstrained region of the state-space is then the same as in the unconstrained
economy, and is found in closed form below, similar to Chabakauri (2015). Next, let v and
v be the values of the state variable vt when constraints (10) of investors A and B bind,
respectively. We guess and verify below that state variable vt stays within boundaries
v ≤ vt ≤ v. Intuitively, binding collateral requirements restrict the investors’ losses
of wealth and consumption, which traps the state variable in the interval [v, v]. The
boundaries v and v are found from the condition that the constraints bind: Wi,t+∆t = 0.
Dividing these constraints by Dt+∆t, we obtain equations for v and v:

ΦA(v) = 0, ΦB(v) = 0. (24)

Proposition 1 below reports the dynamics of vt, and Appendix contains the proof.

Proposition 1 (Closed-form dynamics of state variable vt).
Given the boundaries v and v, the equilibrium dynamics of state variable vt is given by:

vt+∆t = max
{
v; min{ v; vt + µv∆t+ σv∆wt + Jv∆jt}

}
, (25)

where drift µv, volatility σv, and jump Jv are given in closed form by:

µv = 1
2∆t

(γA − γB) ln[(1 + µD∆t)2 − σ2
D∆t] + ln

(
1− λB∆t
1− λ∆t

)2

+ ln(1− δ2∆t)
 ,(26)

σv = 1
2
√

∆t

(
(γA − γB) ln

(
1 + µD∆t+ σD

√
∆t

1 + µD∆t− σD
√

∆t

)
+ ln

(
1 + δ

√
∆t

1− δ
√

∆t

))
, (27)

Jv = (γA − γB) ln(1 + µD∆t+ JD) + ln
(
λ
B

λ

)
− µv∆t. (28)
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Boundaries v and v are reflecting when ∆t is sufficiently small; that is, vt does not stay
at the boundaries forever: Prob(v > vt+∆t|vt = v) > 0 and Prob(vt+∆t > v|vt = v) > 0.

Equation (25) reveals the exact structure of the state variable and sheds light on the
equilibrium effects of the collateral requirement. The equation demonstrates that the
constraint does not alter the dynamics of the state variable when the constraint is not
binding, and all its effects are due to imposing low and upper bounds on process vt. To
our best knowledge, this paper is the first to provide closed-form dynamics of the state
variable in an economy with collateral requirements. This dynamics helps us build a
theory of collateral requirements (10). In particular, we use dynamics (10) to prove the
existence of equilibrium and stationarity of equilibrium processes, to derive asset prices in
closed-form in Section 3.1, and to study the effects of collateralization on asset prices.

Our next step is to find the SPD and asset prices. Proposition 2 reports the results.

Proposition 2 (Characterization of equilibrium in discrete time).

1) The state price density under the beliefs of investor A is given by:

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

Dt+∆t

Dt

)−γA
exp

(
max{0; vt +µv∆t+σv∆wt +Jv∆jt− v}

)
, (29)

where investor A’s time-t consumption share s(vt) solves equation (14).

2) The price-dividend ratio Ψ and wealth-aggregate consumption ratios Φi are functions of
the state variable v, and satisfy equations:

Ψ(vt) = EA

t

[
ξA,t+∆t

ξAt

Dt+∆t

Dt

(
Ψ(vt+∆t) + ∆t

)]
, (30)

Φi(vt) = EA

t

[
ξA,t+∆t

ξAt

Dt+∆t

Dt

Φi(vt+∆t)
]

+
(
1{i=A}s(vt) + 1{i=B}(1− s(vt))− li

)
∆t, (31)

Boundaries v and v solve equations (24). The matrix of asset payoffs is invertible if and
only if σt(1 + rt∆t) 6= 0, where σt and rt are the stock return volatility in normal times
and the interest rate, respectively.

3) The price-dividend ratio in the constrained economy is higher than in the unconstrained
economy with pledgeable income for the same value of state variable vt in the two economies.

Equation (29) captures the effect of collateralization on the SPD in our economy. It
shows that the change in the SPD, ξt+∆t/ξt, can be decomposed into two terms. The
first term, e−ρ∆t(s(vt+∆t)Dt+∆t)−γA/(s(vt)Dt)−γA , given by the ratio of marginal utilities
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of investor A at times t+ ∆t and t, is the change in SPD in the frictionless economy. The
second term captures the effect of the friction on the SPD, and is only activated when the
constraint of investor A is binding. Similar and equivalent representation of SPD can be
obtained in terms of the marginal utilities of investor B. Using the SPD we then find the
price-dividend and wealth-consumption ratios (30)–(31).

Proposition 2 also demonstrates that imposing collateral requirements inflates the price-
dividend ratio of the stock for all model parameters for which the equilibrium exists.
This result is in contrast to the effects of borrowing, margin, and restricted participation
constraints in the related literature (e.g., Chabakauri, 2013, 2015; Rytchkov, 2014), which
increase or decrease the stock prices depending on the investors’ elasticities of intertemporal
substitution. We discuss the detailed intuition and further economic differences between
our constraint and the constraints in the literature in Section 4.1.

The related literature discussed in the introduction evaluates the effects of frictions
in multi-period economies numerically for particular calibrations. In contrast to this lit-
erature, aided by the closed-form dynamics of the state variable (25) and the SPD (29),
we provide a rigorous proof that constraint (10) increases stock price-dividend ratios for
general risk aversions and beliefs. We demonstrate that the SPD in the economy with
frictions exceeds the SPD in the frictionless economy for a given value of vt. Hence, for
the same level of output Dt, the stock price at date t is higher in the constrained economy.

3.1. Closed-form solution in a continuous-time limit

Next, we take continuous-time limit ∆t → 0 and derive the equilibrium in closed form.
Taking the limit allows rewriting equations (30) and (31) for the price-dividend and wealth-
consumption ratios, Ψt and Φit, as differential-difference equations. For tractability, we
derive ratios Ψt and Φit in terms of a transformed ratio Ψ̂(v; θ), which satisfies a simpler
equation reported in Lemma 2 below.

Lemma 2 (Differential-difference equation). In the limit ∆t→ 0, the price-dividend
ratio Ψ and wealth-aggregate consumption ratios Φi are given by:

Ψ(v) = Ψ̂(v;−γA)s(v)γA , (32)

Φi(v) =
(
(1{i=A} − 1{i=B})Ψ̂(v; 1− γA) + (1{i=B} − li)Ψ̂(v;−γA)

)
s(v)γA , (33)
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where s(v) solves equation (14) and Ψ̂(v; θ) satisfies a differential-difference equation
σ̂2
v

2 Ψ̂′′(v; θ) +
(
µ̂v + (1− γA)σDσ̂v

)
Ψ̂′(v; θ)

−
(
λ+ ρ− (1− γA)µD + (1− γA)γA

2 σ2
D

)
Ψ̂(v; θ)

+ λ(1 + JD)1−γAΨ̂
(
max{v; v + Ĵv}; θ

)
+ s(v)θ = 0,

(34)

subject to the reflecting boundary conditions

Ψ̂′(v; θ) = 0, Ψ̂′(v; θ)− Ψ̂(v; θ) = 0, (35)

where µ̂v, σ̂v ≥ 0, and Ĵv ≤ 0 are constants given by:

µ̂v = (γA − γB)
(
µD −

σ2
D

2

)
+ λ− λB −

δ2

2 , (36)

σ̂v = (γA − γB)σD + δ, (37)

Ĵv = (γA − γB) ln(1 + JD) + ln
(
λB
λ

)
. (38)

The boundaries v and v solve the following equations:

Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

= lA,
Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

= 1− lB. (39)

We observe that equation (34) is linear, in contrast to economies with constraints
directly imposed on trading strategies of investors (e.g., Gârleanu and Pedersen, 2012;
Chabakauri, 2013, 2015; Rytchkov, 2014). This equation is a differential-difference equa-
tion with a “delayed” argument in the fourth term on the left-hand side of the equation
because Ĵv ≤ 0. This term is further complicated by the fact that the delayed argument
is restricted to stay above the lower boundary v, which gives rise to the dependence of
the fourth term on a peculiar argument max{v; v + Ĵv}. This term captures investors’
decisions in anticipation of hitting their collateral constraint.

Before deriving the equilibrium in the general case, in Corollary 1 below, we provide
analytical price-dividend ratios when there is no crisis and investors have log preferences.

Corollary 1 (Analytical asset prices in a special case). Suppose, investors A and B
have logarithmic preferences and there is no production crisis, that is, λ = λB = 0. Then,
price-dividend ratio Ψ(v) is given by:

Ψ(v) = 1
ρ

+ C1e
ϕ+v + C2e

ϕ−v

1 + ev
, (40)
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where ϕ± = 0.5(1 ±
√

1 + 8ρ/δ2), and constants C1 and C2 are given by equations (A41)
and (A42) in the Appendix, respectively.

In Section 4 below, we argue that the analytical price-dividend ratio (40) captures some
important properties of price-dividend ratio that hold in the general case with arbitrary
risk aversions and crises. Hence, this special case can be used as a tractable benchmark
in asset pricing research. Nevertheless, we undertake a comprehensive investigation of
equilibrium in the general case.

Proposition B.1 in Appendix B presents the closed-form price-dividend ratio for general
risk aversions and beliefs. Although the closed-form solution in Proposition B.1 is complex,
it helps us build a theory of collateral constraints (10). First, it provides a proof that
the boundary-value problem (34)–(35) has a unique solution given the boundaries v and
v. Second, using this closed-form solution we prove the existence of boundaries v and
v in Proposition B.2 in Appendix B. Third, it helps avoid numerical methods based on
value function iterations (e.g., Krusell and Smith, 1998), widely used in the literature
with market frictions, for which the convergence results, in general, are not available.
We double-checked the solution reported in Proposition B.1 by solving problem (34)–(35)
using the method of finite differences and verifying that it gives the same result.

We call the interval v ∈ [v, v−Ĵv] in the state-space a period of anxious economy, similar
to Fostel and Geanakoplos (2008).5 When the economy falls into this state, even a small
possibility of a crisis renders the collateral requirement binding and leads to deleveraging
in the economy. To explore the economic effects of the anxious economy, we provide closed-
form expressions for the interest rates rt and risk premia in normal times µt − rt, which
can be easily obtained using previously derived equations for asset prices and the state
price density. Proposition 3 below reports the results.

Proposition 3 (Interest rates and risk premia in the limit). For a sufficiently small
interval ∆t, the interest rate rt and the risk premium µt− rt in normal times are given by:

rt =


r̃t − λ(1 + JD)−γA

s
(
max{v; vt + Ĵv}

)
st

−γA +O(∆t), for v < vt < v,

(1− st)Γt
(
1{v=v} − 1{v=v}

)
− γB

2γB
√

∆t
σ̂v +O(1), for v = v or v = v,

(41)

5However, in contrast to Fostel and Geanakoplos (2008), the disagreement about the consumption
growth dynamics in our economy does not increase during these periods.
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µt − rt =
(
γAσD −

(1− st)Γtσ̂v
γB

+ (1− st)Γtσ̂v(1{v=v} + 1{v=v})− γBσ̂v1{v=v}

2γB

)
σt

− λ(1 + JD)−γAJt

s
(
max{v; vt + Ĵv}

)
st

−γA +O(
√

∆t), (42)

where r̃t is the interest rate in the unconstrained economy without crisis risk, given by:

r̃t = λ + ρ+ γAµD −
γA(1 + γA)

2 σ2
D +

(
γAσDσ̂v − µ̂v

γB

)
(1− st)Γt

− σ̂2
v

(
1

2γ2
B

(1− st)2Γ2
t + 1

2γ2
Aγ

2
B

st(1− st)Γ3
t

)
,

(43)

drift µ̂v, volatility σ̂v, and Ĵv of the state variable v are given by equations (36)–(38),
volatility σt and jump size Jt are given by equations (B7)–(B8), respectively, and Γt ≡
γAγB/

(
γA(1− st) + γBst

)
is the risk aversion of a representative investor.

The effects of collateral requirements on interest rates and risk premia arise due to the
investors’ concern that a potential crisis may render the constraint binding next period
when the economy is close to boundary v. The last term in the first equation in (41) for the
interest rate quantifies the impact of collateral requirements on precautionary savings due
to a downward jump in the aggregate consumption, which we further discuss in Section 4.

Equations (41) and (42) also feature terms with indicator functions 1{v=v} and 1{v=v},
which are non-zero only at the boundaries v and v. For the interest rate rt these terms have
the order of magnitude proportional to 1/

√
∆t, and hence, the interest rate has singularities

at the boundaries v and v when ∆t → 0. Similar singularities arise in a continuous-time
model of Detemple and Serrat (2003). Our discrete-time analysis sheds new light on these
singularities by uncovering their order of magnitude 1/

√
∆t. Consequently, the per-period

rate rt∆t is finite and has an order of magnitude O(
√

∆t).

The intuition for the singularity is that near the boundaries v and v even a small shock
∆wt may lead to a default. Consequently, when the collateral requirement of an investor
binds at time t, the investor allocates a larger fraction of labor income to bond than in
the interior region v < vt < v and requires a higher risk premium. Therefore, the interest
rate decreases and Sharpe ratio increases at the boundaries.
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3.2. Stationary distribution of consumption share

Absent any frictions, state variable v follows an arithmetic Brownian motion with a jump.
This process is non-stationary and induces non-stationarity of the unconstrained equilib-
rium where one of the investor’s share of consumption gradually converges to zero. Hence,
with the exception of some knife-edge parameter combinations, only one of the investors
has a significant impact on asset prices in the frictionless economy in the long run (e.g.,
Blume and Easley, 2001; Yan, 2008; Chabakauri, 2015).

It is intuitive that imposing collateral requirements (10) helps both investors survive
and have an impact on equilibrium in the long-run because these constraints protect in-
vestors against losing their shares of aggregate consumption beyond certain limits. Similar
intuition for the survival of investors in economies with market imperfections has been dis-
cussed in the previous literature (e.g., Blume and Easley, 2001). However, this intuition
does not tell anything about the shape of the distribution of consumption share s, whether
this distribution is well-defined or degenerate (e.g., fully concentrated at boundaries s or
s), and which parameters determine the relative dominance of investors in the economy.
Armed with the closed-form dynamics of the state variable vt in (25), we derive the prob-
ability density function (PDF) of consumption share s in closed form, and show that this
PDF is stationary and well-defined. The latter result is important because it implies non-
trivial time-variation of asset prices in the long run. For simplicity, we assume that there
is no crisis risk so that λ = λB = 0. Proposition 4 reports the results.

Proposition 4 (Stationary distribution of consumption share). Suppose, λ =
λB = 0. Then, the PDF f(s, τ ; st; τ) of consumption share s at time τ conditional on
observing share st at time t is given in closed form by expression (A62) in the Appendix.
Furthermore, the stationary PDF of consumption share s is given by:

f(s) = 2µ̂v
σ̂2
v

(
γA
s

+ γB
1− s

) (
(1− s)γB/sγA

)2µ̂v/σ̂2
v

(
(1− s)γB/sγA

)2µ̂v/σ̂2
v −

(
(1− s)γB/sγA

)2µ̂v/σ̂2
v

1{s≤s≤s}, (44)

where µ̂v = (γA − γB)(µD − σ2
D/2) − δ2/2, σ̂v = (γA − γB)σD + δ, 1{s≤s≤s} is an indicator

function and s and s are the bounds on the consumption share s, which solve equation (24)
for v and v, respectively.

Proposition 4 confirms that both investors survive in the long run, and that consump-
tion share s has well-defined stationary distribution. The beliefs enter PDF (44) via the
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Figure 2
Convergence to stationary distribution of consumption share st = c∗

A,t/Dt

The Figure shows transition densities f(s, t; s0, 0) for the starting point s0 = 0.2 and the station-
ary distribution f(s) (i.e., density for t =∞). We set γA = 2, γB = 1.5, µD = 0.018, σD = 0.032,
λ = λB = 0, ρ = 0.02, δ = 0.1125, s = 0.1, s = 0.9, lA = 0.123, and lB = 0.14.

ratio of the drift and variance of process vt, given by µ̂v/σ̂
2
v . This ratio determines the

relative dominance of investors in the economy. In particular, for bounds s and s that are
symmetric around 0.5 the PDF is concentrated around s if µ̂v > 0 and around s if µ̂v < 0.

Figure 2 plots the stationary PDF (44) and transition densities f(s, t; s0, 0), for pa-
rameters described in the legend and explained in Section 4 below. The stationary PDF
has a larger mass around s = 0.1 because the labor share lB = 0.14 of investor B exceeds
the labor share lA = 0.123 of investor A in this example in order to get boundary values
s = 0.1 and s = 0.9 symmetric around 0.5. From Figure 2 we observe that both rational
and irrational investors can occasionally have large consumption shares.

Another notable feature of PDF (44) is that it is bimodal, with a large mass of the
distribution concentrated around boundaries s and s. The economic implication of this
bimodality is that the periods of binding constraints are likely to be persistent. The closed-
form dynamics (25) for the state variable v helps explain the bimodality of the PDF. From
this dynamics, we observe that after hitting a boundary the process vt remains in its
vicinity for some time. Hence, because variable v follows an arithmetic Brownian motion
in the interval (v, v), the probability of hitting the same boundary again is high.
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4. Analysis of Equilibrium

In this section, we demonstrate the economic implications of our model. In Section 4.1, we
show that capital requirements amplify the effect of rare crises on generating lower interest
rates and higher Sharpe ratios, lead to spikes and crashes of stock prices and stock return
volatilities, amplify volatility in good times and decrease it in bad times, and generate
volatility clusters. Section 4.2 measures the economic significance of collateralization by
quantifying the collateral premium of the stock.

We study the equilibrium for calibrated parameters. We set the parameters of the
aggregate consumption process to µD = 0.018, σD = 0.032, JD = −0.2, and the crisis
intensities of investors A and B to λ = 0.017 and λB = 0.01, respectively.6 The risk
aversions are γA = 2 and γB = 1.5, and the time discount is ρ = 0.02. The disagreement
parameter is δ = 0.1125, which corresponds to the mean growth rate (6) under investor
B’s beliefs equal to 1.2µD. The shares of labor income lA = 0.123 and lB = 0.14 are chosen
to generate symmetric bounds on investor A’s consumption share: s = 0.1 and s = 0.9.7

We plot the equilibrium distributions and processes as functions of consumption share
st = c∗At/Dt because s lies in the interval [0, 1] and is more intuitive than variable v. We
observe that consumption share s is countercyclical in the sense that corrt(dst, dDt) <
0. Intuitively, the aggregate wealth and consumption shift to (away from) investor A
following negative (positive) shocks to output because this investor is more risk averse and
pessimistic than investor B. We call a process procyclical (countercyclical) if that process
is a decreasing (increasing) function of s. We interpret periods of low (high) st as good
(bad) times in the economy, because during these periods the output Dt is high (low).

4.1. Equilibrium processes

Figure 3 depicts investor B’s leverage/market ratio Lt/St and stock holdings nBt in the
constrained (solid line) and unconstrained (dashed line) economies. Panel (a) demonstrates
the cyclicality of leverage. The leverage is lowest when either investor A or investor B bind
on their constraints. Intuitively, when s = s, investor B’s financial wealth is zero, and

6Drift µD and volatility σD are within the ranges considered in the literature (e.g., Basak and Cuoco,
1998; Chan and Kogan, 2002; Rytchkov, 2014), intensity λ = 0.017 is from Barro (2009).

7To avoid finding bounds s and s numerically, we set them exogenously to s = 0.1 and s = 0.9 and
then recover the shares of labor incomes lA = 0.123 and lB = 0.14 that imply these bounds in equilibrium.
First, we find v and v from equation (14) for v, and then find lA and lB from equations (39).
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Figure 3
Leverage and stock holdings of optimistic and less risk averse investor B
Panels (a) and (b) depict optimistic and less risk averse investor B’s leverage/market price ratio
Lt/St and the number of shares nSt, respectively, as functions of consumption share st = c∗

At/Dt.
The solid and dashed lines correspond to constrained and unconstrained economies, respectively.

hence, B lacks collateral and cannot borrow. When s = s, investor A’s financial wealth
is zero and the labor income lADt∆t is infinitesimally small in the continuous-time limit.
The liquidity dries up because investor A cannot supply credit. The leverage cycles are
present only in the constrained economy. They do not occur in the unconstrained economy
where the state variable s is non-stationary and gradually converges to 0 or 1.

Panel (b) presents the number of stocks held by investor B. Consider first the uncon-
strained economy where the labor income is pledgeable. From panel (b) we observe that in
this economy investor B shorts stocks despite being more optimistic than investor A when
consumption share s is close to 1. The intuition is that in bad times, following a sequence
of negative shocks to output, investor B shorts stocks to finance consumption and backs
short positions by the pledgeable labor income. The stream of labor income lBDt∆t is
equivalent to dividends from holding n̂B = lB/(1− lA − lB) units of non-tradable shares in
the Lucas tree. Short-selling allows the investor to circumvent the non-tradability of labor
income and freely adjust the effective share n̂B + nB,St in the Lucas tree. Overcoming the
non-tradability of labor incomes makes this economy similar to the non-stationary uncon-
strained economy where investors can freely trade shares in the Lucas tree. The financial
wealth can then become negative. The collateral requirement imposes non-negative wealth
constraint, which precludes investor B from shorting. The trading strategy of investor A
equals 1− n∗Bt in equilibrium and can be analyzed similarly. Investor A also has an addi-
tional motive to short stocks due to being more pessimistic than investor B.
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Figure 4 depicts the interest rate rt, Sharpe ratio (µt − rt)/σt, price-dividend ratio
Ψ, and excess stock return volatility (σt − σD)/σD in the constrained (solid line) and
unconstrained (dashed line) economies. Panel (a) shows the interest rates rt.8 The interest
rate declines sharply when the economy enters into an anxious state close to the boundary
s where even a small possibility of a crisis next period makes the constraint of investor
B binding. The intuition is as follows. In the unconstrained economy, a crisis around
state s generates wealth transfer to the pessimistic and more risk averse investor A and
increases her consumption share s above s. In the constrained economy, consumption share
s is capped by s. Consequently, following a crisis, investor A’s marginal utility (c∗A)−γA

is higher in the constrained than in the unconstrained economy. As a result, investor
A is more willing to smooth consumption in the constrained economy, and hence, the
interest rate declines due to the precautionary savings motive. In particular, the investor
buys more bonds, which drives interest rates down. Panel (b) of Figure 4 shows that the
Sharpe ratio increases to compensate investor A for buying risky assets from investor B.

Our results on interest rates and Sharpe ratios indicate that the rare crises and collateral
requirements reinforce the effects of each other. In particular, the decreases in interest rates
and increases in Sharpe ratios during anxious times arise only when both the crises and
the constraints (10) are simultaneously present. Removing the constraint but keeping the
crisis risk increases the interest rate and decreases the Sharpe ratio. Equation (41) for the
interest rate and equation (42) for the risk premium show that removing the crisis risk
(i.e., setting λ = λB=0) but keeping the constraint leads to rt and µt − rt which are the
same as in the frictionless economy when v < vt < v, consistent with findings in Detemple
and Serrat (2003). Absent any crises, the constraints affect rt and µt − rt only at the
boundaries of the state-space, as shown in Section 3.1.

From panel (c), we observe that the collateral requirements give rise to higher price-
dividend ratio Ψ than in the unconstrained economy, Ψconstr

t − Ψunc
t > 0, as proven in

Proposition 2. The increases in ratio Ψ are larger around the boundaries s and s, which
makes ratio Ψ a U-shaped function of s sensitive to small shocks close to boundaries.
The U-shape is a robust phenomenon that does not require rare crises or investors that
differ both in risk aversions and beliefs. When both investors have identical risk aversions
γA = γB = 1 but different beliefs and there is no crisis risk (i.e., λA = λB = 0), the U-shape

8We exclude the singularities in the dynamics of rt and focus on the dynamics in the unconstrained
region because the economy spends an infinitesimal amount of time at the boundaries.
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Equilibrium processes
Panels (a)–(d) show interest rate rt, Sharpe ratio (µt − rt)/σt, price-dividend ratio Ψt, and
excess volatility (σt − σD)/σD as functions of st = c∗

At/Dt for the constrained (solid lines) and
unconstrained (dashed lines) economies.

is an analytical result that follows from the closed-form expression (40) for ratio Ψ. This
ratio remains U-shaped when investors have different risk aversions but identical beliefs.

The intuition for the U-shape is as follows. Suppose, consumption share s is close to the
boundary s, where investor B’s constraint is likely to bind but investor A is unconstrained.
Because investor A’s constraint is loose the state price density ξAt is proportional to in-
vestor A’s marginal utility (c∗At)−γA . In the constrained economy the consumption share
of investor A is capped by s < 1 whereas in the unconstrained economy it can increase
above s. Therefore, the marginal utility of investor A and, hence, the state price density
are expected to be higher in the constrained than in the unconstrained economy. Con-
sequently, stocks are more valuable in the constrained economy around the boundary s.
The intuition around s can be analyzed in a similar way. An additional economic force
contributing to higher stock price is that the stock can be used as collateral that helps
relax the constraint, which gives rise to a premium. This force is explored in Section 4.2.
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The results on panel (d) demonstrate that the constraint makes volatility more pro-
cyclical, reduces volatility in bad times (around s) and increases it in good times (around
s). This is because U-shaped price-dividend ratio in the constrained economy is more pro-
cyclical in good times (i.e., around s) and more countercyclical in bad times (i.e., around
s) than in the unconstrained economy. Stock price St = ΨtDt is more volatile in good
times (around s) because both Ψ and Dt change in the same direction, and is less volatile
in bad times (around s) because Ψ and Dt change in opposite directions and partially
offset the effects of each other. Lower volatility in bad times is in line with the previous
literature on the effects of portfolio constraints on asset prices (e.g., Chabakauri, 2013,
2015; Brunnermeier and Sannikov, 2014, among others). The empirical literature finds
that the volatility tends to be higher in bad times (e.g., Schwert, 1989). However, high
volatility can be explained by high uncertainty about the economic growth and learning
effects in bad times (e.g., Veronesi, 1999), which are absent in our model.

Boundary conditions (35) allow us to explore volatility σt near the boundaries s and s
using closed form expressions in Corollary 2 below.9

Corollary 2 (Stock return volatility at the boundaries). Stock return volatility in
normal times σt satisfies the following boundary conditions:

σ(s) = σD + γBsσ̂v
γA(1− s) + γBs

> σD, σ(s) = σD −
γA(1− s)σ̂v

γA(1− s) + γBs
< σD. (45)

By continuity, inequalities (45) also hold in a vicinity of the boundaries. Panel (d)
shows that volatility σt is very steep at the boundaries: it spikes close to s and crashes
close to s, consistent with Corollary 2. It also evolves in three regimes of low, medium, and
high volatility, which resembles volatility clustering documented in the empirical literature
(e.g., Bollerslev, 1987). The distribution of consumption share s on Figure 2 implies that
the economy persists in these clusters for some time.

Figure 5 plots the simulated dynamics of P/D ratio and stock return volatility over
a period of 50 years. Consistent with our discussion above, the dynamics of P/D ratio
on panel (a) exhibits intervals of booms and busts around the times when the collateral
requirements become binding. These intervals resemble periods of inflating and deflating
bubbles in the economy. The volatility σ on panel (b) evolves in clusters of high and low

9We observe that σt(1 + rt∆t) 6= 0, and hence, as shown in Proposition B.1, the matrix of asset payoffs
is invertible under our calibration, which is assumed in the beginning of Section 3.
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Simulated P/D ratio Ψ and stock return volatility σ over time
Panels (a) and (b) show the spikes and crashes of simulated P/D ratio and volatility σ, and
clustering of volatility σ over the period of 50 years.

volatility, as explained above.

4.2. Collateral liquidity premium

In this section, we measure the liquidity premium of stocks over labor income arising
because stocks can be used as collateral. We consider a marginal representative investor
i that does not affect asset prices and characterize this investor’s shadow indifference
price Ŝit of labor income. We define Ŝit as the price such that exchanging marginal ∆li
units of labor income for Ŝit∆li units of wealth leaves the investor’s utility unchanged.
Consider the investor’s value function Vi(Wit, vt; li) satisfying the dynamic programming
equation (20) subject to constraints (21) and (22). Price Ŝit is the solution of equation
Vi(W ∗

it, vt; li) = Vi(W ∗
it + Ŝit∆li, vt; li −∆li) when ∆li → 0. In the limit, we find:

Ŝit = ∂Vi(W ∗
it, vt; li)/∂li

∂Vi(W ∗
it, vt; li)/∂Wit

. (46)

The definition of shadow indifference price Ŝit comes from the literature on the valuation
of derivative securities in incomplete markets (e.g., Davis, 1997).

The labor incomes liDt∆t are proportional to dividends (1− lA − lB)Dt∆t. Therefore,
if claims on labor incomes were tradable and pledgeable, shadow price Ŝit would have been
equal to St/(1 − lA − lB). However, labor incomes are non-tradable and non-pledgeable.
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Collateral liquidity premia from the view of investors A and B

The Figure shows the collateral liquidity premia (47) of stocks over non-pledgeable labor incomes
from the view of investors A and B.

Hence, from the view of investor i, the stock enjoys liquidity premium, which we define as

Λit = St/(1− lA − lB)− Ŝit
St/(1− lA − lB) . (47)

We find derivatives in equation (46) using the envelope theorem. Then, we derive prices
Ŝit and show that premia (47) are positive and large. Proposition 5 reports our results.

Proposition 5 (Shadow prices and the liquidity premium). In the limit ∆t → 0,
investor i′s shadow price of a unit of labor income is given by:

Ŝit = Ψ̂i(v;−γA)s(v)γADt, i = A,B, (48)

where Ψ̂i(v; θ) satisfies differential-difference equation (34) subject to the following bound-
ary conditions for investors A and B

Ψ̂′A(v; θ) = 0, Ψ̂′A(v; θ) = 0, (49)

Ψ̂′B(v; θ) = Ψ̂B(v; θ), Ψ̂′B(v; θ) = Ψ̂B(v; θ). (50)

The investors’ liquidity premia for stocks ΛA and ΛB are positive, and hence,

St/(1− lA − lB) > ŜAt, St/(1− lA − lB) > ŜBt. (51)

The premium Λit > 0 arises because the stock can be used as a collateral whereas the
labor income cannot. The non-tradability of labor income per se does not give rise to the
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liquidity premium. Intuitively, as discussed in Section 4.1, in an unconstrained economy
with fully pledgeable labor income the investors can circumvent the non-tradability of labor
income by establishing short positions in the stock which are backed by this pledgeable
income. We further remark that the shadow prices and liquidity premia can be found in
closed form, similar to stock prices in Section 3, but we do not present them for brevity.

Figure 6 plots the liquidity premia (47) for the same calibrated parameters as in Section
4.1. We observe that investors A and B have different valuations of their labor incomes
due to differences in preferences and beliefs. Their premia Λi are close to zero when the
investors are far away from the boundaries where their respective collateral requirements
become binding. The premia increase up to 35% close to the boundaries where the stock
is more valuable for the purposes of relaxing the constraints. Large premia Λit imply the
economic significance of stock pledgeability.

5. Conclusion

We develop a parsimonious and tractable theory of asset pricing under collateral require-
ments. We show that requiring investors to collateralize their trades has significant effects
on asset prices and their moments. The constraints decrease interest rates and increase
Sharpe ratios when optimistic investors are close to default boundaries. They also increase
price-dividend ratios, amplify volatilities in good states and dampen them in bad states.
Hence, collateral requirements emerge as viable instruments for stabilizing markets in bad
times. The tractability of our model allows us to obtain asset prices and the distributions
of consumption shares in closed form.
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Appendix A: Proofs

Lemma A.1 (Change of variable). Let n̂i = kili/(1 − lA − lB). Maximization of
expected discounted utility (7) subject to budget constraints (8) and (9), and constraint (11)
is equivalent to maximizing (7) with respect to cit, bit and ñit subject to the following set
of constraints:

W̃it + liDt∆t = cit∆t+ bitBt + ñit(St, Pt)>, (A1)

W̃i,t+∆t = bit + ñit
(
St+∆t + (1− lA − lB)Dt+∆t∆t, 1{ωt+∆t=ω3}

)>
, (A2)

W̃i,t+∆t ≥ 0, (A3)

where W̃it = Wit + n̂iSt and W̃i,t+∆t = Wi,t+∆t + n̂i(St+∆t + (1− lA − lB)Dt+∆t).

Proof of Lemma A.1. Substituting nit = ñit − (n̂i, 0) into (8) and (9), we obtain
constraints (A1) and (A2). Rewriting constraint (11) in terms of variable W̃i,t+∆t, we
obtain (A3). Finally, we note that W̃it = Wit + n̂iSt is worth W̃i,t+∆t next period. Hence,
(A1) and (A2) can be seen as self-financing budget constraints. �

Proof of Lemma 1.

1) We start by demonstrating the equivalence of the dynamic (8)–(9) and static budget
constraints (21). Multiplying equation (9) by ξi,t+∆t/ξit, taking expectation operator Eit[·]
on both sides, and using equations (16)–(18) for asset prices, we obtain:

Eit

[
ξi,t+∆t

ξit
Wi,t+∆t

]
= bitBt + nit(St, Pt)>. (A4)

From the budget constraint equation (8), we observe that the right-hand side of (A4)
equals Wit + liDt∆t, and hence, we obtain the static budget constraint (21). Conversely,
if there exists Wi,t+∆t satisfying constraints (21) and (22) there exist trading strategies
bit and nit that replicate Wi,t+∆t because the underlying market is effectively complete
(i.e., the payoff matrix is invertible). Then, rewriting the optimization problem (7) in a
recursive form, we obtain the dynamic programming equation (20) for the value function.

2) Consider wealth levels Wit and Ŵit. Let {c∗it, b∗it, n∗it} and {ĉ∗it, b̂∗it, n̂∗it} be optimal con-
sumptions and portfolios that correspond to Wit and Ŵit, respectively, and satisfy con-
straints (8)–(10). For any α ∈ [0, 1], policies {αĉ∗it + (1−α)c∗it, αb̂∗it + (1−α)b∗it, αn̂∗it + (1−
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α)n∗it} are admissible for wealth αWit + (1− α)Ŵit. By concavity of CRRA utilities:

Vi(αWit + (1− α)Ŵit, vt; li)≥
∞∑
τ=t

ui(αĉ∗it + (1− α)c∗it)

≥
∞∑
τ=t

(αui(ĉ∗it) + (1− α)ui(c∗it))

= αVi(Wit, vt; li) + (1− α)Vi(Ŵit, vt; li).

(A5)

Therefore, Vi(Wit, vt; li) is a concave function of wealth.

3) Consider the following Lagrangian:

L = ui(cit)∆t+ e−ρ∆tEit
[
Vi(Wi,t+∆t, vt+∆t; li)

]
+ ηit

(
Wit + liDt∆t− cit∆t− Eit

[ξi,t+∆t

ξit
Wi,t+∆t

])
+ Eit

[
e−ρ∆t`i,t+∆tWi,t+∆t

)]
,(A6)

where multiplier `i,t+∆t satisfies the complementary slackness condition `i,t+∆tWi,t+∆t = 0.
Differentiating the Lagrangian (A6) with respect to cit and Wi,t+∆t, we obtain:

u′i(c∗it) = ηit, (A7)

e−ρ∆t
(
∂Vi(Wt+∆t, vt+∆t; li)

∂W
+ `i,t+∆t

)
= ηit

ξi,t+∆t

ξit
. (A8)

By the envelope theorem (e.g, Back (2010, p.162)):

∂Vi(Wi,t+∆t, vt+∆t; li)
∂W

= u′i(c∗i,t+∆t). (A9)

Substituting the partial derivative of the value function (A9) and the marginal utility (A7)
into equation (A8), and then dividing both sides of the equation by u′i(c∗it), we obtain the
expression for the SPD (23). �

Proof of Proposition 1.
Step 1. Consider the case when constraints do not bind, and hence, `i,t+∆t = 0. Then,
using equation (13) for the state variable vt and the first order conditions (23), we obtain:

vt+∆t − vt = ln
(

(c∗A,t+∆t/c
∗
At)−γA

(c∗
B,t+∆t/c

∗
Bt)−γB

(
Dt+∆t

Dt

)γA−γB)
= ln

(
ξA,t+∆t/ξAt
ξB,t+∆t/ξBt

(
Dt+∆t

Dt

)γA−γB)
.

From the above equation and the change of measure equation (19), which relates SPDs
ξA,t+∆t and ξB,t+∆t, we obtain the dynamics of vt when constraints do not bind:

vt+∆t − vt = ln
(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)
. (A10)
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Let v and v be the boundaries satisfying Equations (24), at which the constraints
of investors A and B bind, respectively. Let investor A’s constraint be binding so that
vt+∆t = v, and hence, `A,t+∆t ≥ 0. Using Equation (13) for vt, first order conditions (23),
and `A,t+∆t ≥ 0, we obtain:

v − vt ≤ ln
(

((c∗A,t+∆t)−γA + `A,t+∆t)/(c∗At)−γA
(c∗
B,t+∆t/c

∗
Bt)−γB

(
Dt+∆t

Dt

)γA−γB)

= ln
(
ξA,t+∆t/ξAt
ξB,t+∆t/ξBt

(
Dt+∆t

Dt

)γA−γB)
= ln

(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)
.

(A11)

Similarly, for vt+∆t = v we obtain that v−vt ≥ ln
(
πB(ωt+∆t)/πA(ωt+∆t)

(
Dt+∆t/Dt

)γA−γB).
The latter two inequalities imply that when the constraint binds vt+∆t is given by:

vt+∆t = max
{
v; min

{
v; vt + ln

(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)}}
. (A12)

We observe that (A12) is also satisfied in the unconstrained case where v < vt+∆t < v. It
remains to prove that vt does not escape [v, v] interval. Consider a marginal investor of
type A. We guess that vt follows dynamics (A12) and verify that the consumption choice
of investor A indeed implies this dynamics. The analysis for investor B is similar.

We have shown above that vt satisfies inequality (A11) when investor A is constrained.
Now, we show the opposite: investor A is constrained when vt satisfies (A11). Hence, vt+∆t

cannot exceed v. Consider vt such that vt+ln
(
πB(ωt+∆t)/πA(ωt+∆t) (Dt+∆t/Dt)γA−γB

)
> v

for some ωt+∆t and vt ∈ (v, v). Because v < vt < v, investor A consumes c∗At = s(vt)Dt, as
shown above. We show that the constraint of investor A binds and c∗A,t+∆t = s(v)Dt+∆t.
This consumption level confirms that vt+∆t = v is indeed an equilibrium outcome.

Consider the constraint of investor A at date t in the state ωt+∆t where vt+∆t = v:

WA,t+∆t ≥ 0 ≡ ΦA(v)Dt+∆t, (A13)

where the last equality holds by the definition of v. Using the concavity of the value
function, proven in Lemma 1, and condition (A9) from the envelope theorem, we obtain:

u′A(c∗A,t+∆t) = ∂VA(WA,t+∆t, v; lA)
∂W

≤ ∂VA(ΦA(v)Dt+∆t, v; lA)
∂W

= u′A(s(v)Dt+∆t). (A14)

Because u′i(c) is a decreasing function, we find that c∗A,t+∆t/Dt+∆t ≥ s(v).

Investor B is unconstrained when vt+∆t = v, and hence, has SPD

ξB,t+∆t

ξBt
= e−ρ∆t

(
c∗B,t+∆t

c∗Bt

)−γB
= e−ρ∆t

(
(1− s(v))Dt+∆t

(1− s(vt))Dt

)−γB
. (A15)
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From the change of measure equation (19) and the FOC (23), the SPD of investor A is

ξA,t+∆t

ξAt
= ξB,t+∆t

ξBt

πB(ωt+∆t)
πA(ωt+∆t)

= e−ρ∆t (c∗A,t+∆t)−γA + `A,t+∆t

(c∗At)−γA
. (A16)

From (A16) and (A15), we find the Lagrange multiplier:

lA,t+∆t

(c∗
A,t+∆t)−γA

=
(
c∗A,t+∆t

c∗At

)γ
A
(

(1− s(v))Dt+∆t

(1− s(vt))Dt

)−γB πB(ωt+∆t)
πA(ωt+∆t)

− 1

≥
(
s(v)Dt+∆t

s(vt)Dt

)γ
A
(

(1− s(v))Dt+∆t

(1− s(vt))Dt

)−γB πB(ωt+∆t)
πA(ωt+∆t)

− 1

=
(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)
evt−v − 1 > 0.

The first inequality follows from the fact that c∗A,t+∆t ≥ s(v)Dt+∆t we proved above. The
second equality holds by the definition of state variable (13). The second inequality comes
from the assumption that vt + ln

(
πB(ωt+∆t)/πA(ωt+∆t) (Dt+∆t/Dt)γA−γB

)
> v. Hence,

the Lagrange multiplier lA,t+∆t is strictly positive. From the complementary slackness
condition, the constraint (A13) must be binding. Therefore, inequality (A14) becomes an
equality, and hence, c∗A,t+∆t = s(v)Dt+∆t.

Step 2. We now look for coefficients µv, σv and Jv such that:

µv∆t + σv∆wt + Jv∆jt = ln
(
πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB)

= ln
(
πB(ωt+∆t)
πA(ωt+∆t)

)
+ (γA − γB) ln(1 + µD∆t+ σD∆wt + Jv∆jt).

(A17)

We write identity (A17) in each of the states ωt+∆t ∈ {ω1, ω2, ω3} and obtain the following
system of three linear equations with three unknowns µv, σv and Jv:

µv∆t + σv
√

∆t = ln
(

(1− λB∆t)(1 + δ∆t)
1− λ∆t

)
+ (γA − γB) ln(1 + µD∆t+ σD

√
∆t),

µv∆t − σv
√

∆t = ln
(

(1− λB∆t)(1− δ∆t)
1− λ∆t

)
+ (γA − γB) ln(1 + µD∆t− σD

√
∆t),

µv∆t + Jv = ln
(
λB
λ

)
+ (γA − γB) ln(1 + µD∆t+ JD).

(A18)

Solving the above system, we obtain µv, σv and Jv reported in Proposition 1.
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Step 3. Finally, we show that the boundaries are reflecting for a sufficiently small ∆t.
Suppose, two conditions are satisfied: µv∆t− σv

√
∆t < 0 and µv∆t+ σv

√
∆t > 0. Then,

the boundaries are reflecting: 1) if vt = v, then vt+∆t = v+µv∆t−σv
√

∆t < v with positive
probability; 2) if vt = v, then vt+∆t = v + µv∆t + σv

√
∆t > v with positive probability.

It can be easily verified that as ∆t → 0, µv → µ̂v and σv → σ̂v, where µ̂v and σ̂v are
constants given by equations (36) and (37), respectively. Because σv > 0 and

√
∆t-terms

dominate ∆t-terms for small ∆t, we find that µv∆t− σv
√

∆t < 0 and µv∆t+ σv
√

∆t > 0
for all sufficiently small ∆t. Hence, the boundaries are reflecting. �

Proof of Proposition 2. 1) First, we derive the SPD ξAt under the correct beliefs of
investor A. When investor A’s constraint does not bind, substituting c∗At = s(vt)Dt into
the first order condition (23) we find that

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

)−γA (Dt+∆t

Dt

)−γA
. (A19)

Equation (A19) is consistent with SPD (29) because when the constraint does not bind
vt+∆t = vt + µv∆t+ σv∆wt + Jv∆jt < v, and hence the exponential term in (29) vanishes.

When the constraint of investor A binds, the constraint of investor B is loose: the con-
straints cannot bind simultaneously lest to violate the market clearing conditions. There-
fore, the ratio ξB,t+∆t/ξBt is given by FOC (23) for investor B with `B = 0. Using equation
(19), we rewrite the latter SPD under the correct beliefs of investor A:

ξA,t+∆t

ξAt
= e−ρ∆t

(
1− s(vt+∆t)

1− s(vt)

)−γB (Dt+∆t

Dt

)−γB πB(ωt+∆t)
πA(ωt+∆t)

. (A20)

Next, from equation (14) for consumption share s we find that (1 − st)−γB = e−vts−γAt .
Substituting the latter equality into equation (A20), and also using equation (A17) for the
increment vt+∆t − vt, we obtain:

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

)−γA (Dt+∆t

Dt

)−γA
evt−vt+∆t

πB(ωt+∆t)
πA(ωt+∆t)

(
Dt+∆t

Dt

)γA−γB

= e−ρ∆t
(
s(vt+∆t)
s(vt)

)−γA (Dt+∆t

Dt

)−γA
exp{vt − vt+∆t + µv∆t+ σv∆wt + Jv∆jt}.

(A21)

The fact that the constraint of investor A is binding means that vt+∆t = v and vt+µv∆t+
σv∆wt + Jv ≥ v (because otherwise vt+∆t < v, and hence, the constraint does not bind).
Therefore, the exponential term exp(vt − vt+∆t) in equation (A21) can be replaced with
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exp(max{0, vt +µv∆t+σv∆wt + Jv∆jt− v}). When the constraint of investor A does not
bind the latter term vanishes and we obtain equation (A19). Therefore, both equations
(A19) and (A21) are summarized by equation (29) for ξA,t+∆t/ξAt.

2) The equation (30) for the price-dividend ratio can be easily obtained by substituting
St = (1− lA− lB)Ψt into equation (17) for stock prices in terms of SPD and then dividing
both sides by Dt. The equation (31) for the wealth-aggregate consumption ratio can be
obtained by substituting Wit = DtΦit into the equation for the static budget constraint
(21) and dividing both sides by Dt.

To derive the matrix of asset returns, we rewrite the stock price dynamics as follows:

∆St +Dt+∆t∆t
St

= µt∆t+ σt∆wt + Jt∆jt.

Therefore, the matrix of time-(t+ ∆t) bond, stock and insurance returns is given by:
1 + rt∆t 1 + µt∆t+ σt

√
∆t 0

1 + rt∆t 1 + µt∆t− σt
√

∆t 0

1 + rt∆t Jt 1/Pt

 .

It is easy to see that the determinant of the above matrix is given by −2σt∆t(1+rt∆t)/Pt.
Therefore, the matrix is non-degenerate when σt(1 + rt∆t) 6= 0.

3) In the unconstrained economy, the state variable vunct follows dynamics:

vunct = µv∆t+ σv∆wt + Jv∆jt. (A22)

Define processes Ut+∆t = Ut + ∆Ut and Vt+∆t = Vt + ∆Vt, where increments are given by:

∆Ut = max{0; vt+µv∆t+σv∆wt+Jv∆jt−v}, ∆Vt = max{0; v−vt−µv∆t−σv∆wt−Jv∆jt}.
(A23)

The process for the state variable in the constrained economy can be rewritten as

vt+∆t = vt + µv∆t+ σv∆wt + Jv∆jt + ∆Vt −∆Ut. (A24)

If the state variables have the same value at time 0, i.e., v0 = vunc0 , we obtain:

vt = vunct + Vt − Ut (A25)

37



Next, we prove that the SPD is higher in the constrained economy.

ξA,t+∆t

ξAt
= e−ρ∆t

(
s(vt+∆t)
s(vt)

Dt+∆t

Dt

)−γA
exp(∆Ut), (A26)

ξuncA,t+∆t

ξuncAt

= e−ρ∆t
(
s(vunct+∆t)
s(vunct )

Dt+∆t

Dt

)−γA
. (A27)

Iterating the above equations, we obtain:

ξAt
ξA0

= e−ρt
(
s(vt)
s(v0)

Dt

D0

)−γA
exp(Ut),

ξuncAt

ξuncA0
= e−ρt

(
s(vunct )
s(v0)

Dt

D0

)−γA
.

By the definition of s(v) in equation (14), we have ev = (1− s(v))γB · s(v)−γA . Hence,

ξAt/ξA0

ξuncAt /ξ
unc
A0

=
(
s(vt)
s(vunct )

)−γA
exp(Ut)

=
(
s(vunct + Vt − Ut)

s(vunct )

)−γA
ev

unc
t e−(vunct −Ut)

≥ s(vunct − Ut)−γAe−(vunct −Ut) · s(vunct )γAevunct

= (1− s(vunct − Ut))−γB · (1− s(vunc))γB ≥ 1.

(A28)

Therefore, we conclude that ξAt/ξA0 > ξuncAt /ξ
unc
A0 . The latter inequality and the equation

for stock prices (17) imply that Ψ(v0) ≥ Ψunc(v0). The proof for the case when time-t
variables in the constrained and unconstrained economies coincide is analogous. �

Proof of Lemma 2. Define the following function in discrete time:

Ψ̂(vt; θ) = EA

t

[
e−ρ∆t+∆Ut

(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

]
+ s(vt)θ∆t, (A29)

where ∆Ut is given by equation

∆Ut = max{0; vt + µv∆t+ σv∆wt + Jv∆jt − v}. (A30)

Comparing equation (A29) with equations (30) and (31) for Ψ and Φi and using the
linearity of equation (A29), it easy to observe that Ψ(vt) and Φi(vt) are given by the
following equations in terms of Ψ̂(vt; θ):

Ψ(vt) = Ψ̂(vt,−γA)s(vt)γA −∆t,

Φ(vt) =
(
(1{i=A} − 1{i=B})Ψ̂(v; 1− γA) + (1{i=B} − li)Ψ̂(v;−γA)

)
s(v)γA .

38



Taking limit ∆t→ 0, we obtain equations (32) and (33) for Ψ(vt) and Φi(vt).

First, we derive the equation for Ψ̂(vt; θ) when vt belongs to the interior (v, v). For a
sufficiently small ∆t we have ∆Ut = 0, where ∆Ut is given by (A30). Then, we rewrite
the expectation of (Dt+∆t)/Dt)1−γAΨ̂(vt; θ) as follows:

EA
t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

]
= (1− λ∆t)EA

t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

∣∣∣normal
]

+λ∆tEA
t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

∣∣∣crisis
]
.

(A31)

Noting that in the crisis Dt+∆t/Dt = 1 + µv∆t+ JD and vt+∆t = max{v; vt + µv∆t+ Jv}
and in the normal state Dt+∆t/Dt = 1 + µD∆t+ σD∆wt and vt+∆t = vt + µv∆t+ σv∆wt,
using Taylor expansions for (Dt+∆t/Dt)1−γA and Ψ̂(vt+∆t; θ), we find:

EA

t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)|crisis

]
= (1 + JD)1−γAΨ̂

(
max{v; vt + Jv}; θ

)
. (A32)

EA

t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)|normal

]
=
[
1 +

(
(1− γA)µD + (1− γA)γAσ2

D

2

)
∆t
]

Ψ̂(vt; θ)

+
(
µv + (1− γA)σDσv

)
Ψ̂′(vt; θ)∆t + σ2

v

2 Ψ̂′′(vt; θ)∆t+ o(∆t). (A33)

Substituting (A32)-(A33) into (A29), we obtain:

Ψ̂(vt; θ) =
[
1−

(
λ+ ρ− (1− γA)µD + (1− γA)γA

2 σ2
D

)
∆t
]

Ψ̂(vt; θ)

+
(
µv + (1− γA)σDσv

)
Ψ̂′(v; θ)∆t+ σ2

v

2 Ψ̂′′(v; θ)∆t

+ λ(1 + JD)1−γAΨ̂
(
max{v; vt + Jv}; θ

)
∆t+ s(v)θ∆t+ o(∆t).

(A34)

Canceling similar terms, diving by ∆t, taking limit ∆t → 0, and noting that µv, σv and
Jv converge to µ̂v, σ̂v and Ĵv given by (36)-(38), we obtain equation (34) for Ψ̂(vt; θ).

Next, we derive the boundary conditions for Ψ̂(vt; θ). From equation (25), the state
variable dynamics at lower bound is vt+∆t = v + max{0, µv∆t+ σv∆wt + Jv∆jt}. We use
∆vt to denote the difference of vt+∆t and vt. In this case,

∆vt = max{0, µv∆t+ σv∆wt + Jv∆jt}. (A35)

For sufficiently small ∆t increment ∆vt is positive only in state ω1 and is zero otherwise.
In state ω1, ∆vt = µv∆t + σv

√
∆t. Therefore, the order of EA

t [∆vt] is
√

∆t, but second
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order terms involving ∆vt have lower order:

lim
∆t→0

EA
t [∆vt]√

∆t
= σ̂v

2 ,

lim
∆t→0

EA
t

[
(∆vt)2

]
√

∆t
= lim

∆t→0

EA
t [∆vt∆t]√

∆t
= lim

∆t→0

EA
t [∆vt∆wt]√

∆t
= lim

∆t→0

EA
t [∆vt∆jt]√

∆t
= 0.

(A36)

Taylor expansion of Ψ̂(vt+∆t; θ) at vt = v is given by

Ψ̂(vt+∆t; θ) = Ψ̂(v; θ) + Ψ̂′(v; θ)∆vt + 1
2Ψ̂′′(v; θ)∆v2

t + o(
√

∆t). (A37)

In subsequent calculations we keep terms with order of
√

∆t. Using the above results, we
obtain the following expansion:

EA
t

[(
Dt+∆t

Dt

)1−γA
Ψ̂(vt+∆t; θ)

]

= EA
t

[
(1 + µD∆t+ σD∆wt + Jv∆jt)1−γA

(
Ψ̂(v; θ) + Ψ̂′(v; θ)∆vt + 1

2Ψ̂′′(v; θ)∆v2
t

)]
= Ψ̂(v; θ) + Ψ̂′(v; θ)EA

t [∆vt] + o(
√

∆t).

(A38)

Substituting (A38) into (A29), taking into account that ∆Ut = 0 at vt = v, and canceling
Ψ̂(v; θ) on both sides, we obtain the first boundary condition Ψ̂′(v; θ) = 0.

At the upper bound vt = v investor A is constrained, and hence, ∆Ut in (A30) is
positive. From (25) the state variable at the upper bound is

vt+∆t = min{v, vt + µv∆t+ σv∆wt + Jv∆jt} = vt + µv∆t+ σv∆wt + Jv∆jt−∆Ut. (A39)

The order of EA
t [∆Ut] is

√
∆t, but second order terms involving ∆Ut have order o(

√
∆t).

Proceeding in the same way as (A36)-(A38), we arrive at

Ψ̂(v; θ) = Ψ̂(v; θ) +
[
Ψ̂(v; θ)− Ψ̂′(v; θ)

]
EA

t [∆Ut] + o(
√

∆t).

Canceling similar terms, taking limit ∆t→ 0, we obtain condition Ψ̂(v; θ)− Ψ̂′(v; θ) = 0.

Finally, we derive the equations for v and v. Taking limit ∆t → 0 in equations (24),
we find that these equations become: ΦA(v) = 0, ΦB(v) = 0. Substituting Φi(v) and Ψ(v)
in terms of Ψ̂(v; θ) from equations (33) into the latter equations for the boundaries, after
some algebra, we obtain equations (39). �

Proof of Corollary 1. Consider the case λ = λB = 0 and γA = γB = 1. Then, s(v)
solving equation (25) is given by s(v) = 1/(1 + ev), Ψ(v) = Ψ̂(v)s(v), where Ψ̂(v) solves a
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special case of equation (34) given by:

δ2

2 Ψ̂′′(v)− δ2

2 Ψ̂′(v)− ρΨ̂(v) + 1 + ev = 0, (A40)

subject to boundary conditions (35). It can be easily verified that Ψ̂(v) = C1e
ϕ−v +

C2e
ϕ+v + (1 + ev)/ρ satisfies (A40). Substituting Ψ̂(v) into boundary conditions (35), we

obtain the following system for coefficients C1 and C2:

C1ϕ−e
ϕ−v + C2ϕ+e

ϕ+v + ev/ρ = 0; C1(ϕ− − 1)eϕ−v + C2(ϕ+ − 1)eϕ+v − 1/ρ = 0.

Solving these equations, we obtain:

C1 = 1
ρ

(ϕ+ − 1)ev+ϕ+v + ϕ+e
ϕ+v

ϕ+(ϕ− − 1)eϕ−v+ϕ+v − ϕ−(ϕ+ − 1)eϕ+v+ϕ−v
, (A41)

C2 =−1
ρ

(ϕ− − 1)ev+ϕ−v + ϕ−e
ϕ−v

ϕ+(ϕ− − 1)eϕ+v+ϕ−v − ϕ−(ϕ+ − 1)eϕ+v+ϕ−v
. � (A42)

Proof of Proposition 3. From equation (16) for the bond price and the fact that
1 = Bt(1 + rt∆t) we find that the riskless interest rate rt is given by:

rt = 1− Et[ξA,t+∆t/ξAt]
Et[ξA,t+∆t/ξAt]∆t

= 1− (1− λ∆t)Et[ξA,t+∆t/ξAt|normal]− λ∆tEt[ξA,t+∆t/ξAt|crisis]
Et[ξA,t+∆t/ξAt]∆t

,

(A43)

where ξA,t+∆t/ξAt is given by equation (29). We separately calculate Et[ξA,t+∆t/ξAt|normal]
and Et[ξA,t+∆t/ξAt|crisis], and then take the limit ∆t→ 0.

We start with the derivation of Et[ξA,t+∆t/ξAt|normal] when v < vt < v, and hence, by
continuity, for a sufficiently small ∆t the economy is unconstrained next period, so that
v < vt+∆t < v. In the unconstrained region ∆vt = µ̂v∆t+ σ̂v∆wt and the SPD is given by
(A19). From the expression for the SPD, using expansions (A52) and (A54), we obtain:

Et
[
ξA,t+∆t

ξAt

∣∣∣normal
]

= Et
[(

(1 + at∆vt + bt(∆vt)2
)(

1− rA∆t− κA∆wt
)
|normal

]
+ o(∆t)

= Et
[
1 + at∆vt + bt(∆vt)2 − rA∆t− κA∆wt − κAat∆vt∆wt

∣∣∣normal
]

+ o(∆t)

= 1 + atµ̂v∆t+ btσ̂
2
v∆t− rA∆t− κAatσ̂v∆t+ o(∆t).

(A44)

41



Conditioning on the crisis state, we have:

Et
[
ξA,t+∆t

ξAt

∣∣∣crisis
]

= (1− ρ∆t)(1 + µD∆t+ JD)−γA
(
s(max{v, vt + µv∆t+ Jv})

s(vt)

)−γA

= (1 + JD)−γA
(
s(max{v, vt + Ĵv})

s(vt)

)−γA
+ o(∆t).

(A45)
Substituting at and bt from (A53) into equation (A44), and then substituting (A44) and
(A45) into equation (A43), after simple algebra, we obtain rt in (41) for the case v < vt < v.

Now, we derive rt at the boundaries v and v. The SPD is given by (29). Using
expansions (A52) and (A54), we obtain the following expansion:

Et
[
ξA,t+∆t

ξAt

∣∣∣normal
]

= Et
[(

(1 + at∆vt + bt(∆vt)2
)(

1− rA∆t− κA∆wt
)

×(1 + ∆Ut + 0.5(∆Ut)2)|normal
]

+ o(∆t)

= Et
[
1 + at∆vt + bt(∆vt)2 − rA∆t− κA∆wt − κAat∆vt∆wt

+ ∆Ut − κA∆wt∆Ut + at∆Ut∆vt + 0.5(∆Ut)2
∣∣∣normal

]
+O(∆t),

(A46)
where ∆Ut is given by equation (A30). Using equation (25) for the process vt and equation
(A30) for ∆Ut, for a fixed vt and sufficiently small ∆t, we find that ∆vt and ∆Ut at the
boundaries are given by:

∆vt =


min(0, µv∆t+ σv∆wt), if vt = v,

max(0, µv∆t+ σv∆wt), if vt = v,
(A47)

∆Ut =


0, if vt < v,

max(0, µv∆t+ σv∆wt), if vt = v,
(A48)

We note that for a sufficiently small ∆t the sign of µv∆t+ σv∆wt is solely determined by
the second term σv∆wt because it has the order of magnitude

√
∆t. Volatility σv is positive

because under our assumptions investor A is more risk averse and more pessimistic. Using
the latter observation, substituting equations (A47) and (A48) into equation (A46) and
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computing the expectation, we obtain:

Et
[
ξA,t+∆t

ξAt

∣∣∣normal
]

= 1+



(
at(µv − κAσv)

2 + btσ
2
v

2 + µv + κAσv + σ2
v

2 − rA
)

∆t

+σv(1− at)2
√

∆t+O(∆t), if vt = v,(
atµv − atκAσv + btσ

2
v

2

)
∆t+ atσv

2
√

∆t+O(∆t), if vt = v.

(A49)
Substituting (A49) and (A45) into equation (A43) for the interest rate rt, we obtain rt in
(41) for the case when vt is at the boundary.

To obtain the risk premium, we first decompose stock returns as follows:

∆St +Dt+∆t∆t
St

= µt∆t+ σt∆wt + Jt∆jt. (A50)

Multiplying both sides of (A50) by ξA,t+∆t/ξAt and taking expectations, we obtain:

Et
[
ξA,t+∆t

ξAt

∆St +Dt+∆t∆t
St

]
= µt∆tEt

[
ξA,t+∆t

ξAt

]
+ σtEt

[
ξA,t+∆t

ξAt
∆wt

]
+ JtEt

[
ξA,t+∆t

ξAt
∆jt

]
.

On the other hand, from the equation for stock price (17) we find that:

Et
[
ξA,t+∆t

ξAt

∆St +Dt+∆t∆t
St

]
= 1− Et

[
ξA,t+∆t

ξAt

]
.

Combining the last two equations and the equation (A43) for the interest rate, we obtain:

µt − rt = −
(
σt

[
ξA,t+∆t

ξAt
∆wt

]
+ Jt

[
ξA,t+∆t

ξAt
∆jt

])
1 + rt∆t

∆t . (A51)

Then, proceeding in the same way as with the calculation of interest rates and using similar
expansions, we obtain equation (42) for the risk premium. �

Lemma A.2 (Useful expansions).

1) For small increment ∆vt = vt+∆t − vt the ratio
(
s(vt+∆t)/s(vt)

)−γA has expansion:
(
s(vt+∆t)
s(vt)

)−γA
= 1 + at∆vt + bt(∆vt)2 + o(∆t), (A52)

where coefficients at and bt are given by:

at = (1− st)Γt
γB

, bt = 1
2γ2

B

(1− st)2Γ2
t + 1

2γ2
Aγ

2
B

st(1− st)Γ3
t , (A53)
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Γt = γAγB/(γA(1 − s) + γBs) is the risk aversion of the representative investor and st is
consumption share of investor A that solves equation (14).

2) For the case JD = 0, the SPD in a one-investor economy can be expanded as follows:

e−ρ∆t
(
Dt+∆t

Dt

)−γA
= 1− rA∆t− κA∆wt + o(∆t), (A54)

where rA and κA are the riskless rate and the Sharpe ratio in an economy populated only
by investor A, given by:

rA = ρ+ γAµD −
γA(1 + γA)

2 σ2
D, κA = γAσD. (A55)

Proof of Lemma A.2. 1) We expand the ratio on the left-hand side of (A52) using Tay-
lor’s formula, and observe that at = (s(vt)−γA)′/s(vt)−γA and bt = 0.5(s(vt)−γA)′′/s(vt)−γA .
Differentiating, we obtain the following expressions for at and bt:

at = −γA
s′(vt)
s(vt)

, bt = γA(1 + γA)
2

(
s′(vt)
s(vt)

)2

− γA
2
s′′(v)
s(v) . (A56)

To find derivatives s′(v) and s′′(v), we differentiate equation (14) twice with respect to v,
and obtain two equations for the derivatives:

1 = −
(
γA
st

+ γB
1− st

)
s′(vt), (A57)

0 =
(
γA
s2
t

− γB
(1− st)2

)
(s′(vt))2 −

(
γA
st

+ γB
1− st

)
s′′(vt). (A58)

Finding s′(v) and s′′(v) from the system (A57)–(A58) and substituting them into expres-
sions (A56) for coefficients at and bt, after some algebra, we obtain expressions (A53).

2) Substituting Dt+∆t/Dt from (1) into equation (A54), after some algebra, we obtain:

e−ρ∆t
(
Dt+∆t

Dt

)
= e−ρ∆t (1 + µD∆t+ σD∆wt)−γA

= (1− ρ∆t)
(

1−
(
γAµD −

γA(1 + γA)
2 σ2

D

)
∆t− γAσD

)
+ o(∆t)

= 1− rA∆t− κA∆wt + o(∆t). �

(A59)

Proof of Proposition 4. Consider a reflected arithmetic Brownian motion with bound-
aries v and v and dynamics dvt = µ̂vdt+ σ̂vdwt when v < vt < v, where wt is a Brownian
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motion. The transition density for this process is given by (see Veestraeten, 2004):

fv(v, τ ; vt, t) = 1√
2πσ̂2

v(τ − t)

+∞∑
n=−∞

exp

−2µ̂v
σ̂2
v

n(v − v)−

(
v − vt − µ̂v(τ − t) + 2n(v − v)

)2

2σ̂2
v(τ − t)



+ exp

−2µ̂v
σ̂2
v

(
vt − v + n(v − v)

)
−

(
v − vt − µ̂v(τ − t) + 2(vt − v + n[v − v])

)2

2σ̂2
v(τ − t)




+ 2µ̂v
σ̂2
v

+∞∑
n=0

[
exp

(
−2µ̂v
σ̂2
v

(
v − v + n[v − v]

))
N
(
vt + µ̂v(τ − t)− v − 2(v − v + n[v − v])

σ̂v
√
τ − t

)

− exp
(

2µ̂v
σ̂2
v

(
v − v + n[v − v]

))(
1−N

(
vt + µ̂v(τ − t)− v + 2(v − v + n[v − v])

σ̂v
√
τ − t

))]
,

(A60)
whereN (·) is the cumulative distribution of a standard normal distribution. By Fv(v, τ ; vt, t)
= Prob{vτ ≤ v|vt} we denote the corresponding cumulative distribution function of v con-
ditional on observing vt at time t. We observe that st = s(vt) is a decreasing function
of vt implicitly defined by equation (14). From the latter equation we also find that
s−1(x) = γB ln(1 − s) − γA ln(s). The cumulative distribution function of consumption
share sτ at time τ conditional on observing st at time t can then be found as follows:

F (x, τ ; st, t) = Prob{sτ ≤ x|st} ≡ Prob{s(vτ ) ≤ x|st}

= 1− Prob{vτ ≤ s−1(x)|vt}

= 1− Prob{vτ ≤ γB ln(1− x)− γA ln(x)|vt}

= 1− Fv(γB ln(1− x)− γA ln(x), τ ; vt, t).

(A61)

Substituting vt = γB ln(1−st)−γA ln(st) into (A61), differentiating CDF F (x, τ ; st, t) with
respect to x and setting x = s, we find that the transition PDF for s is given by:

f(s, τ ; st, t) =
(
γA
s

+ γB
1− s

)
fv
(
γB ln(1−s)−γA ln(s), τ ; γB ln(1−st)−γA ln(st), t

)
, (A62)

where transition density fv(v, τ ; vt, t) is given by equation (A60).

The stationary distribution of variable v, calculated in Veestraeten (2004), is given by:

fv(v) = 2µ̂v
σ̂2
v

exp
(
(2µ̂v/σ̂2

v)v
)

exp
(
(2µ̂v/σ̂2

v)v
)
− exp

(
(2µ̂v/σ̂2

v)v
) . (A63)

Proceeding in the same way as for the derivation of transition PDF (A62), we obtain
stationary PDF (44) for consumption share s. �
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Proof of Corollary 2. The proof easily follows by substituting boundary conditions (35)
into the equation (B7) for volatility σt at the boundary values v and v. �

Proof of Proposition 5. Consider Lagrangian (A6) for the dynamic optimization of
investor i. Differentiating this Lagrangian with respect to li and cit, we obtain:

∂Vi(W ∗
it, vt; li)
∂li

= ηitDt∆t+ e−ρ∆tEit

[
∂Vi(W ∗

i,t+∆t, vt+∆t; li)
∂li

]
, (A64)

u′(c∗it) = ηit. (A65)

By the envelope theorem (e.g., Back (2010, p.162)):
∂Vi(Wit, vt; li)

∂W
= u′i(c∗it), (A66)

∂Vi(Wi,t+∆t, vt+∆t; li)
∂W

= u′i(c∗i,t+∆t). (A67)

Substituting (46), (A65), (A66), and (A67) into equation (A64), and simplifying, we find:

Ŝit = Dt∆t+ Eit

[
e−ρ∆tu

′
i(c∗i,t+∆t)
u′i(c∗it)

Ŝi,t+∆t

]
. (A68)

From equation (29), we recall that the SPD of investor A is given by

ξA,t+∆t

ξAt
= e−ρ∆t+∆Ut (c

∗
A,t+∆t)−γA
(c∗At)−γA

Dt+∆t

Dt

, (A69)

where ∆Ut = max{0; vt + µv∆t + σv∆wt + Jv∆jt − v}. Rewriting equation (A68) for
investor A in terms of SPD (A69), we obtain:

ŜAt = Dt∆t+ EA

t

[
e−∆Ut ξA,t+∆t

ξAt
ŜA,t+∆t

]
. (A70)

Following the same steps as in the proof of Lemma 2, we find that ŜAt = Ψ̂i(vt;−γA)s(vt)γADt,
where Ψ̂i(v; θ) satisfies differential-difference equation (34) with boundary conditions (49).

Iterating equation (17) for stock and equation (A70) for shadow prices, we obtain:

St + (1− lA − lB)Dt∆t = 1
ξt
EA

t

[
∞∑
τ=t

ξτ (1− lA − lB)Dτ∆t
]
, (A71)

ŜAt = 1
ξt
EA

t

[
∞∑
τ=t

e−(Uτ−Ut)ξτDτ∆t
]
. (A72)

Inequality (St + (1 − lA − lB)Dt∆t)/(1 − lA − lB) > ŜAt follows from the fact that Ut =∑t
τ=0 ∆Uτ is a non-decreasing processes. In the continuous-time limit, we obtain that

St/(1− lA− lB) > ŜAt. Hence, the liquidity premium ΛAt is positive. The derivation of the
shadow price of investor B is analogous and available upon request.
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Appendix B: Existence of boundaries v and v.

Proposition B.1 (Closed-form solutions).

1) In the limit ∆t → 0 the price-dividend ratio Ψ and wealth-consumption ratios Φi are
given by equations (32) and (33), where function Ψ̂(v; θ) is given by:

Ψ̂(v; θ) =
∫ v

v
s(y)θψ̂(v − y)dy +

∫ v

v
s(y)θ

[
ψ̂′(v − y)− ψ̂(v − y)

]
dy

1 +H

(
ψ̂(v − v)−

∫ v−v

0
ψ̂(y)dy

) (
1−H

∫ v−v

0
ψ̂(y)dy

)
,

(B1)
where s(y) solves equation10 (14), and ψ̂(x), H and some auxiliary variables are given by:

ψ̂(x) = 2
σ̂2
v

∞∑
n=0

(2λ(1 + JD)1−γA

σ̂2
v

)n exp
(
(ζ+ + ζ−)(x+ nĴv)/2

)
(ζ+ − ζ−)2n+1n! (B2)

× Qn

(
(ζ+ − ζ−)(x+ nĴv)

2

)
1{x+nĴv≥0}

]
, (B3)

Qn(x) = exp(−x)
n∑

m=0
(2x)n−m (n+m)!

m!(n−m)! − exp(x)
n∑

m=0
(−2x)n−m (n+m)!

m!(n−m)! , (B4)

H = λ+ ρ− (1− γA)µD + (1− γA)γA
2 σ2

D − λ(1 + JD)1−γA , (B5)

ζ± = −
µ̂v + (1− γA)σ̂vσD ∓

√
(µ̂v + (1− γA)σ̂vσD)2 + 2σ̂2

v

(
λ+ ρ− (1− γA)µD + (1−γA)γA

2 σ2
D

)
σ̂2
v

.

(B6)
2) Stock return volatility in normal times and the jump size Jt are given by:

σt = σD +
(

Ψ̂′(vt;−γA)
Ψ̂(vt;−γA)

− γA(1− s(vt))
γA(1− s(vt)) + γBs(vt)

)
σ̂v, (B7)

Jt =
(1 + JD)Ψ̂

(
max{v; vt + Ĵv};−γA

)
s
(
max{v; vt + Ĵv}

)γA
Ψ̂(vt;−γA)s(vt)γA

− 1. (B8)

Numbers of shares n∗i,St and leverage Lit = −bitBit to market price St ratio are given by:

n∗i,St = Φi(vt)σD + Φ′i(vt)σ̂v
Ψ(vt)σt

,
Lit
St

= ni,St −
Φi(vt)

Ψ(vt)(1− lA − lB) . (B9)

10Although s(y) is not in closed form, we observe from equation (14) that its inverse is given by s−1(x) =
γB ln(x)−γA ln(1−x). The change of variable x = s(y) eliminates implicit functions, similar to Chabakauri
(2015). We keep all integrals in terms of s(y) because s(y) is intuitive and easily computable from (14).
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Proof of Proposition B.1. 1) First, we solve the differential-difference equation in
Lemma 2. We denote g(x) = Ψ̂(x+ v; θ) and apply the following changes of variables:

x = v − v, σ̃ = σ̂v, µ̃ = µ̂v + (1− γA)σDσ̂v, J̃ = −Ĵv, λ̃ = λ(1 + JD)1−γA ,

ρ̃ = λ+ ρ− (1− γA)µD + (1− γA)γA
2 σ2

D.
(B10)

Equations (34) and (35) with new variables now become:

σ̃2

2 g
′′(x) + µ̃g′(x)− ρ̃g(x) + λ̃g(max{x− J̃ , 0}) + s(x+ v)θ = 0, (B11)

g′(0) = 0, g(v − v)− g′(v − v) = 0. (B12)

Let L [g(x)] =
∫∞

0 e−zxg(x)dx be the Laplace transform of g(x), and similarly for other
functions. The Laplace transforms of g′(x), g′′(x) and g(max{x− J̃ , 0}) are given by:

L [g′(x)] = zL [g(x)]− g(0),

L [g′′(x)] = z2L [g(x)]− zg(0)− g′(0),

L
[
g(max{x− J̃ , 0})

]
=
∫ ∞

0
e−zxg(max{x− J̃ , 0})dx

=
∫ J̃

0
e−zxg(0)dx+

∫ ∞
J̃

e−zxg(x− J̃)dx

= 1
z

(1− e−J̃z)g(0) + e−J̃zL [g(x)] .

(B13)

Applying the transform to equation (B11), we arrive at the following equation:

σ̃2

2
(
z2L [g(x)]− zg(0)− g′(0)

)
+ µ̃ (zL [g(x)]− g(0))− ρ̃L [g(x)]

+ λ̃
(
e−J̃zL [g(x)] + 1

z
(1− e−J̃z)g(0)

)
+ L

[
s(x+ v)θ

]
= 0.

(B14)
Applying boundary condition g′(0) = 0 and solving for L [g(x)], we obtain:

L [g(x)] =
L
[
s(x+ v)θ

]
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

+ g(0)
(

1
z
− ρ̃− λ̃
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

· 1
z

)
. (B15)

Now define a new function ψ̂(x) through inverse Laplace transform

ψ̂(x) = L−1
[

1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

]
. (B16)
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Next, we apply inverse transform to each term in (B15). Noting that L−1[1/z] = 1 and
using the theorem which states that Laplace transform of a convolution is the product of
Laplace transforms, we derive the following inverse transforms:

L−1

 L
[
s(x+ v)θ

]
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

 =
∫ x

0
s(y + v)θ · ψ̂(x− y)dy,

L−1
[

1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

· 1
z

]
=
∫ x

0
1{y≥0} · ψ̂(x− y)dy =

∫ x

0
ψ̂(y)dy.

(B17)

The linearity of the Laplace transform gives the following equation:

g(x) = L−1 [L [g(x)]] =
∫ x

0
s(y + v)θ · ψ̂(x− y)dy + g(0)

[
1−

(
ρ̃− λ̃

) ∫ x

0
ψ̂(y)dy

]
. (B18)

We calculate g(0) below, and then after changing the variable back from x to v = x + v,
substituting in expressions for ρ̃ and λ̃ from (B10), we obtain (B1).

Next, we solve for ψ̂(x) in closed form. We expand L
[
ψ̂(x)

]
as series, and sum up the

inverse transforms of each term in the summation to get ψ̂(x).

L
[
ψ̂(x)

]
= 1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

= (ρ̃− µ̃z − σ̃2

2 z
2)−1 · (1− λ̃e−J̃z

ρ̃− µ̃z − σ̃2

2 z
2
)−1

=
∞∑
n=0

λ̃ne−nJ̃z

(ρ̃− µ̃z − σ̃2

2 z
2)n+1

.

(B19)

The above series converges for z such that |ρ̃− µ̃z− (σ̃2/2)z2| > |λ̃ exp(−J̃z)|. This holds
if the real part of z is sufficiently large, e.g., <(z) > 4|µ̃|/σ̃2 + (2/σ̃)

√
ρ̃+ λ̃. The inverse

Laplace transform can then be calculated along the line (z − i∞, z + i∞) in the complex
domain where z > 4|µ̃|/σ̃2 + (2/σ̃)

√
ρ̃+ λ̃, and hence, the inequality for <(z) is satisfied.

Let ζ− < ζ+ be roots of ρ̃ − µ̃z − σ̃2z2/2 = 0, given by (B6). We use the following
inversion formula for 1/[(z−ζ+)(z−ζ−)]n+1 from Gradshteyn and Ryzhik (2007, p. 1117):

L−1
[

1
[(z − ζ+)(z − ζ−)]n+1

]
=

√
π

Γ(n+ 1)
xn+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 xIn+ 1
2

(
ζ+ − ζ−

2 x

)
. (B20)
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Function e−nJ̃z in the complex domain corresponds to a shift from x to x−nJ̃ . Therefore,

L−1

 λ̃ne−nJ̃z

(ρ̃− µ̃z − σ̃2

2 z
2)n+1

 = λ̃n
(
− σ̃

2

2

)−n−1

1x≥nJ̃

×
√
π

Γ(n+ 1)
(x− nJ̃)n+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 (x−nJ̃)In+ 1
2

(
(ζ+ − ζ−)(x− nJ̃)

2

)
.

(B21)

Consequently, the explicit expression for ψ̂(x) is given by:

ψ̂(x) =
∞∑
n=0

λ̃n
(
− σ̃

2

2

)−n−1 1{x≥nJ̃}
√
π

Γ(n+ 1)
(x− nJ̃)n+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 (x−nJ̃)In+ 1
2

(
(ζ+ − ζ−)(x− nJ̃)

2

)
,

(B22)
where function In+ 1

2
(·) is a modified Bessel function of the first kind, ζ− < ζ+ are given by

(B6) and ρ̃, µ̃, σ̃, λ̃, and J̃ are defined in (B10). Bessel function In+ 1
2
(·) is given by (see

equation 8.467 in Gradshteyn and Ryzhik (2007)):

In+ 1
2
(z) = 1√

2πz

[
ez

n∑
m=0

(−1)m(n+m)!
m!(n−m)!(2z)m + (−1)n+1e−z

n∑
m=0

(n+m)!
m!(n−m)!(2z)m

]
. (B23)

Substituting (B23) into (B22), after minor algebra, we obtain expression (B3) for ψ̂(x).
The infinite series (B22) has only finite number of non-zero terms because for a fixed x

indicators 1{x≥nJ̃} vanish for sufficiently large n, and hence, (B22) is well-defined.

To find g(0) in equation (B18), we first evaluate ψ̂(0). From the above formula (B22),
because 1{0≥nJ̃} = 0 for all n > 0, we obtain

ψ̂(0) = − 2
σ̃2 ·

eζ+·0 − eζ−·0

ζ+ − ζ−
= 0. (B24)

Differentiating (B18) and using ψ̂(0) = 0, we find:

g′(x) =
∫ x

0
s(y + v)θ · ψ̂′(x− y)dy − g(0) ·

(
ρ̃− λ̃

)
ψ̂(x), (B25)

We solve for g(0) from the boundary condition g(v − v)− g′(v − v) = 0 and obtain:

g(0) =

∫ v−v

0
s(y + v)θ ·

[
ψ̂′(v − v − y)− ψ̂(v − v − y)

]
dy

1−
(
ρ̃− λ̃

) ∫ v−v

0
ψ̂(y)dy +

(
ρ̃− λ̃

)
ψ̂(v − v)

. (B26)

Substituting (B26) into (B18), we derive equation (B1) for Ψ̂(v; θ).
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2) Next we solve for stock volatility and jump size. In the unconstrained region v < vt < v,
stock price St, dividend Dt and state variable vt follow processes:

dSt = St[µtdt + σtdwt + Jtdjt],

dDt = Dt[µDdt + σDdwt + JDdjt],

dvt = µ̂vdt+ σ̂vdwt +
(
max{v; vt + Ĵv} − vt

)
djt.

(B27)

Applying Ito’s lemma to St = (1− lA − lB)Ψ̂(vt;−γA)s(vt)γADt, and matching dwt and djt
terms, after some algebra, we obtain σt and Jt in Proposition B.1.

Equation equation (9) for Wi,t+∆t, implies the following expressions for n∗i,St and b∗it:

n∗i,St =

√√√√ vart[Wi,t+∆t −Wit|normal]
vart[∆St + (1− lA − lB)Dt∆t|normal] ,

b∗it = Et[Wi,t+∆t|normal]− nitEt[St+∆t + (1− lA − lB)Dt+∆t∆t|normal].

Taking limit ∆t→ 0 in the above expressions and using expansions similar to those in the
proof of Lemma 2, we obtain the number of stocks and the leverage per the market value
of stocks in equation (B9).

Proposition B.2. Let Ψi be the price-dividend ratio in the economy populated only by
investor i = A,B. If ratios Ψi, given by equations (B37)-(B38) in the Appendix, are
positive and finite, then there exist boundaries v and v that satisfy equations (39).

Proof of Proposition B.2. It is easy to observe that because 1− lB > lA the following
inequality is satisfied: γB ln(lB)− γA ln(1− lB) < γB ln(1− lA)− γA ln(lA). The boundaries
v and v solve equations (39). Define

LB(v, v) = Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

. (B28)

Substituting Ψ̂(v; θ) from (B1) into equation (B28), after some algebra, we obtain:

LB(v, v) =

∫ v

v

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γA · s(y)dy∫ v

v

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γAdy

. (B29)

LB(v, v) is a weighted average of a decreasing function s(y) from v to v. By (B42) in Lemma
B.1 below, function

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γA is positive. Consequently LB(v, v) <
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s(v) and the function is decreasing in its first argument because

∂

∂v
LB(v, v) =

[
ψ̂(v − v)− ψ̂′(v − v)

]
s(v)−γA∫ v

v

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γAdy

[LB(v, v)− s(v)] < 0. (B30)

Consequently, for any v ≥ γB ln(1− lA)− γA ln(lA),

LB(γB ln(lB)− γA ln(1− lB), v) < s(γB ln(lB)− γA ln(1− lB)) = 1− lB. (B31)

Below, we prove that there exists a V < 0 such that LB(V , v) > 1 − lB for any v ≥
γB ln(1 − lA) − γA ln(lA). Then, by the intermediate value theorem, equation (B28) has a
solution v for any fixed v.

Using inequalities (B43) and (B44) from Lemma B.1 and inequality (B58) from Lemma
B.2 below, we derive the following inequality:

1− LB(V , v) =

∫ v

V

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γA(1− s(y))dy∫ v

V

[
ψ̂(v − y)− ψ̂′(v − y)

]
s(y)−γAdy

<

∫ v

V

[
−ez+(v−y)ψ̂′(0)

]
(2γB+1ey + 2γAe

1
γB

y)dy∫ v−1

V

[
−ez+(v−y−1)(z+ − 1)ψ̂(1)

]
s(v)−γAdy

= ψ̂′(0)ez+
s(v)γA

(z+ − 1)ψ̂(1)
·

∫ v

V
2γB+1e(1−z+)y + 2γAe( 1

γB
−z+)y

dy∫ v−1

V
e−z

+ydy

<
ψ̂′(0)ez+

s(γB ln(1− lA)− γA ln(lA))γA
(z+ − 1)ψ̂(1)

·

∫ ∞
V

2γB+1e(1−z+)y + 2γAe( 1
γB
−z+)y

dy∫ γB ln(1−lA)−γA ln(lA)−1

V
e−z

+ydy

.

(B32)
As y decreases, the denominator term e−z

+y increases exponentially faster than any term
on the numerator. Consequently, the right-hand side of the above inequality converges to
0 as V → −∞, which can be formally verified by L’Hôpital’s rule. Therefore, there exists
a V < 0 not dependent on v such that 1− LB(V , v) < lB, or, equivalently,

LB(V , v) > 1− lB. (B33)
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For a given v, LB(v, v) is an continuously decreasing function of v that takes different
signs at the endpoints of the interval [V , γB ln(lB)− γA ln(1− lB)]. Therefore, by the in-
termediate value theorem, there exists unique v ∈ [V , γB ln(lB)− γA ln(1− lB)] such that
LB(v, v) = 1 − lB, and this defines a mapping v = mB(v). Since LB has non-zero partial
derivative with respect to v, mB(·) is continuous by the implicit function theorem.

Similar to (B28), we define

LA(v, v) = Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

. (B34)

Substituting Φ̂(v, θ) from (B1) into (B34), after some algebra, we obtain:

LA(v, v) =

∫ v

v

[
q′(v − v)ψ̂(v − y)− q(v − v)ψ̂′(v − y)

]
s(y)−γA · s(y)dy∫ v

v

[
q′(v − v)ψ̂(v − y)− q(v − v)ψ̂′(v − y)

]
s(y)−γAdy

. (B35)

Proceeding the same way as above, for any v less than or equal to γB ln(lB)−γA ln(1− lB),
there exists a v ∈

[
γB ln(1− lA)− γA ln(lA), V

)
that satisfies LA(v, v) = lA, where V does

not depend on v .This defines a continuous mapping v = mA(v).

Consider the following system of two equations with two unknowns:

v = mA(v), v = mB(v), (B36)

where mA(·) maps v ∈ (−∞, γB ln(lB)− γA ln(1− lB)] to v ∈
[
γB ln(1− lA)− γA ln(lA), V

]
,

and mB(·) maps v ∈ [γB ln(1− lA)− γA ln(lA),∞) to v ∈ [V , γB ln(lB)− γA ln(1− lB)].
Consider now a composition function m(v) ≡ mA(mB(v)). Function m(·) maps v ∈[
γB ln(1− lA)− γA ln(lA), V

]
into itself. Because m(v) is continuous, it has a fixed point v

by the intermediate value theorem. Then, v and v ≡ mB(v) satisfy equations (B36).

As demonstrated in Barro (2009), the price-dividend ratios in homogeneous-investor
economies populated by investors A and B, respectively, are given by:

ΨA = 1

ρ+ (1− γA)µD + (1− γA)γA
2 σ2

D − λ(1 + JD)1−γA
, (B37)

ΨB = 1

ρ+ (1− γB)(µD + σDδ) + (1− γB)γB
2 σ2

D − λB(1 + JD)1−γB
. (B38)
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After simple algebra, it can be shown that ΨA = 1/(ρ̃−λ̃) and ΨA = 1/(ρ̃−µ̃−0.5σ̃2−λ̃e−J̃).
Therefore, assumption (B40) in Lemma B.1 is equivalent to conditions ΨA > 0 and ΨB > 0.
The latter conditions also follow from condition (15) in Section 2 when time is continuous.

The investor’s value functions are bounded because∣∣∣∣∣Et
[∫ ∞

t
e−ρ(τ−t) (c∗iτ )1−γi

1− γi
dτ

]∣∣∣∣∣ =
∣∣∣∣∣Et

[∫ ∞
t

e−ρ(τ−t) s(vτ )1−γiD1−γi
τ

1− γi
dτ

]∣∣∣∣∣
≤ max {s(v)1−γi , s(v)1−γi}

|1− γi|
Et
[∫ ∞
t

e−ρ(τ−t)D1−γi
τ dτ

]

= max {s(v)1−γi , s(v)1−γi} ΨiD
1−γi
t

|1− γi|
< +∞. �

(B39)

Lemma B.1 (Inequalities for ψ̂(x) and ψ̂′(x)). Suppose, the model parameters are
such that the following two inequalities are satisfied:

ρ̃− λ̃ > 0, ρ̃− µ̃− σ̃2

2 − λ̃e
−J̃ > 0, (B40)

where ρ̃, λ̃, µ̃, σ̃ and J̃ are given by equations (B10). Let function q(x) be given by

q(x) = 1− (ρ̃− λ̃)
∫ x

0
ψ̂(y)dy. (B41)

Then, for all x > 0 and v > v the following inequalities are satisfied:

ψ̂(x) < 0, ψ̂′(x) < 0, ψ̂(x)− ψ̂′(x) > 0,

q′(v − v)ψ̂(x)− q(v − v)ψ̂′(x) > 0.
(B42)

Furthermore, there exists z+ > 1 such that

ψ̂(x)− ψ̂′(x) >−ez+(x−1)(z+ − 1)ψ̂(1), for x ≥ 1, (B43)

ψ̂(x)− ψ̂′(x) <−ez+xψ̂′(0), for x > 0. (B44)

Proof of Lemma B.1. From definition (B16), ψ̂(x) satisfies equation:[
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

]
L
[
ψ̂(x)

]
= 1. (B45)

Dividing the above equation by z, applying inverse Laplace transform and using the fact
that ψ̂(0) = 0, we find that ψ̂(x) satisfies the following integro-differential equation:

σ̃2

2 ψ̂
′(x) = −1− µ̃ψ̂(x) + (ρ̃− λ̃)

∫ x

0
ψ̂(y)dy + λ̃

∫ x

max{x−J̃ ,0}
ψ̂(y)dy. (B46)
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Letting x = 0 in equation (B46), we obtain ψ̂′(0) < 0. Therefore, because ψ̂(0) = 0,
ψ̂(x) < 0 in some neighborhood of 0. We first prove that ψ̂(x) < 0 for all x > 0. Suppose,
on the contrary, that there exists x > 0 such that ψ̂(x) ≥ 0. Let x = inf{x ∈ R+ : ψ̂(x) ≥
0}. By the continuity of ψ̂(x), we have ψ̂(x) = 0 and ψ̂(x) < 0 for x ∈ (0, x). Evaluating
equation (B46) at x, we obtain:

σ̃2

2 ψ̂
′(x) = −1− µ̃ψ̂(x) + (ρ̃− λ̃)

∫ x

0
ψ̂(y)dy + λ̃

∫ x

max{x−J̃ ,0}
ψ̂(y)dy

<−1− µ̃ · 0 + (ρ̃− λ̃)
∫ x

0
0 · dy + λ̃

∫ x

max{x−J̃ ,0}
0 · dy = −1.

(B47)

The inequality (B47) is satisfied because ρ̃ − λ̃ > 0 by assumption (B40). However,
ψ̂′(x) < 0 is inconsistent with x being the smallest positive number such that ψ̂(x) = 0
because ψ̂(x) cannot be a decreasing function at x. Therefore, we arrive at a contradiction,
and hence, ψ̂(x) < 0 for all x > 0.

Consider function h(z) ≡ ρ̃ − µ̃z − σ̃2

2 z
2 − λ̃e−J̃z. By assumption (B40), h(0) > 0

and h(1) > 0. It can be easily observed that h(−∞) = h(+∞) = −∞. Therefore,
by the intermediate value theorem there exist two real roots z− < 0 and z+ > 1 that
satisfy equation h(z) = 0. Furthermore, function h(z) is concave because h′′(z) < 0. The
concavity of h(z) implies that h(z) ≥ 0 for all z ∈ [z−, z+].

Let ẑ be any number such that ẑ ∈ [z−, z+], and let α̂(x) ≡ e−ẑxψ̂(x). Next, we
establish that α̂′(x) < 0 for all x ≥ 0. Differentiating equation (B46), we obtain:

σ̃2

2 ψ̂
′′(x) = −µ̃ψ̂′(x) + ρ̃ψ̂(x)− λ̃ψ̂(x− J̃)1x≥J̃ . (B48)

Substituting ψ̂(x) = eẑxα̂(x) into equation (B48), after some algebra, we find:
σ̃2

2 α̂
′′(x) = −(µ̃+ σ̃2ẑ)α̂′(x) + (ρ̃− µ̃ẑ − σ̃2

2 ẑ
2 − λ̃e−J̃ ẑ)α̂(x) + λ̃e−J̃ ẑ

[
α̂(x)− α̂(x− J̃)1x≥J̃

]
=−(µ̃+ σ̃2ẑ)α̂′(x) + (ρ̃− µ̃ẑ − σ̃2

2 ẑ
2 − λ̃e−J̃ ẑ)

∫ x

0
α̂′(y)dy + λ̃e−J̃ ẑ

∫ x

max{x−J̃ ,0}
α̂′(y)dy.

(B49)
We observe that α̂(0) = ψ̂(0) = 0, α̂′(0) = −ẑψ̂(0) + ψ̂′(0) < 0 because ψ̂(0) = 0 and
ψ̂′(0) < 0. The rest of the proof for α̂′(x) < 0 is similar to that of ψ̂(x) < 0. Consequently,
differentiating α̂(x) and dividing α̂′(x) < 0 by e−ẑx, we obtain:

ẑψ̂(x)− ψ̂′(x) > 0, for any ẑ ∈ [z−, z+]. (B50)

In particular for ẑ = 0 we find ψ̂′(x) < 0, and for ẑ = 1 we find ψ̂(x) − ψ̂′(x) > 0.
Therefore, we have proven the first three inequalities in (B42).
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Next, we prove (B43) and (B44). For x > 1, using inequality (B50) and the fact that
α̂(x) = e−ẑxψ̂(x) is a decreasing function, we establish inequality (B43) as follows:

ψ̂(x)− ψ̂′(x) = (1− z+)ψ̂(x) + (z+ψ̂(x)− ψ̂′(x)) >−ez+x(z+ − 1)(e−z+xψ̂(x))

>−ez+x(z+ − 1)(e−z+1ψ̂(1)).
(B51)

To prove (B44), let α̃(x) = −e−z+xψ̂′(x). Differentiating equation (B48) and rewriting it
in terms of α̃(x), we derive the following equation:
σ̃2

2 α̃
′′(x) = −(µ̃+ σ̃2z+)α̃′(x) + λ̃e−J̃z

+
α̃(x)− λ̃e−min{x,J̃}z+

α̃(max{x− J̃ , 0})

=−(µ̃+ σ̃2z+)α̃′(x) + λ̃e−J̃z
+
∫ x

max{x−J̃ ,0}
α̃′(y)dy +

[
λ̃e−J̃z

+ − λ̃e−min{x,J̃}z+]
α̃(0).

(B52)
Letting x = 0 in (B48), we find that ψ̂′′(0) = −2(µ̃/σ̃2)ψ̂′(0). Consequently,

α̃(0) = −ψ̂′(0) > 0 α̃′(0) = −ψ̂′′(0) + z+ψ̂′(0) = 2
σ̃2 (µ̃+ σ̃2

2 z
+)ψ̂′(0) < 0, (B53)

where the last inequality hold because z+ > 1 and z+(µ̃+0.5σ̃2z+) = ρ̃− λ̃e−J̃z+
> ρ̃− λ̃ >

0. Similar to the above, we show that α̃′(x) < 0. Hence, we derive (B44) as follows:

ψ̂(x)− ψ̂′(x) < −ψ̂′(x) = ez
+xα̃(x) < ez

+xα̃(0) = −ez+xψ̂′(0). (B54)

Finally, we prove the last inequality in (B42). We define β̂(x) = e−z
+xq(x) and next

prove that β̂′(x) < 0. Proceeding in the same way as above, we express equation (B46)
first in terms of q(x) and then in terms of β̂(x):

σ̃2

2 q
′′(x) = −µ̃q′(x) + ρ̃q(x)− λ̃q(max{x− J̃ , 0}), (B55)

σ̃2

2 β̂
′′(x) = −(µ̃+ σ̃2z+)β̂′(x) + λ̃e−J̃z

+
β̂(x)− λ̃e−min{x,J̃}z+

β̂(max{x− J̃ , 0})

= −(µ̃+ σ̃2z+)β̂′(x) + λ̃e−J̃z
+
∫ x

max{x−J̃ ,0}
β̂′(y)dy +

[
λ̃e−J̃z

+ − λ̃e−min{x,J̃}z+]
β̂(0).

(B56)
For x = 0 we observe that β̂(0) = q(0) = 1, β̂′(0) = −z+q(0) + q′(0) = −z+q(0) − (ρ̃ −
λ̃)ψ̂(0) = −z+ < 0. Moreover, it is easy to observe that

[
λ̃e−J̃z

+ − λ̃e−min{x,J̃}z+
]
β̂(0) ≤ 0

for all x. Proceeding as above, we find that β̂′(x) < 0, and hence, q′(x) < z+q(x). Using
the latter inequality and ψ̂(x) < 0, we prove the last inequality in (B42):

q′(v − v)ψ̂(x)− q(v − v)ψ̂′(x)≥ z+q(v − v)ψ̂(x)− q(v − v)ψ̂′(x)

= q(v − v)
[
z+ψ̂(x)− ψ̂′(x)

]
> 0. �

(B57)
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Lemma B.2 (Inequality for consumption shares). Let s(vt) denote the consumption
share of investor A. Then, for all v ∈ R the following inequality is satisfied:

s(v)−γA(1− s(v)) ≤ 2γB+1ev + 2γAev/γB . (B58)

Proof of Lemma B.2. First, we rewrite equation (14) in the following equivalent form:

s(v)−γA(1− s(v))γB = ev. (B59)

When γB ≤ 1, from the above equation we obtain the following inequality:

s(v)−γA(1− s(v)) ≤ s(v)−γA(1− s(v))γB = ev. (B60)

For γB > 1 and 1− s(v) ≥ 1/2, we find that:

s(v)−γA(1− s(v)) ≤ 2γB−1s(v)−γA(1− s(v))γB = 2γB−1ev. (B61)

Finally, for γB > 1 and s(y) ≥ 1/2 we have the following inequality:

s(y)−γA(1− s(y)) ≤ 2γA−γA/γBs(y)−γA/γB(1− s(y)) < 2γAev/γB . (B62)

Combining all the inequalities (B60)-(B62), we obtain inequality (B58). �
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