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Abstract

This study examines how firms’ exposure to climate-related physical and trans-
ition risks affects bank credit allocation. Using novel, granular measures for both risk
types, merged with matched firm-bank data from Danish registers, I find that banks
reduce credit growth to firms with higher physical and transition risks. A one standard
deviation increase in each type of risk results in a 1%-2% reduction in loan growth,
representing about an 8%-16% deviation from the mean. These effects are most pro-
nounced for constrained firms (e.g., small or highly leveraged) and are concentrated
within banks with high exposure to risk and repeat lending relationships. Addition-
ally, the evidence suggests that more credit is allocated to risky but “greening” firms
and firms with low combined physical and transition risks. Finally, the credit supply
side is likely to play a more important role in the observed effect, partly due to banks’
credit risk concerns.
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1 Introduction
The impact of climate-related risks on the banking sector has been an increasing concern
for financial regulators. This is due to the potential for climate risks to affect financial
stability and the broader economy (Carney, 2015; ECB, 2021a,b; Fed, 2021). Furthermore,
understanding how the banking sector responds to climate risks is crucial for achieving
sustainability goals as banks play in key role in directing funds toward green projects, and
incentivizing firms to engage in sustainability practices.

There are two types of climate-related risks that banks are indirectly exposed to via their
lending: (i) physical risks, resulting from damages to firms due to increasing frequency and
intensity of extreme climate events, and (ii) transition risks, associated with the implement-
ation of climate policies aimed at reducing emissions of high-emitting firms. In this paper, I
examine how firms’ exposure to physical and transition risks affects banks’ credit allocation.
To do so, I utilize novel, granular measures of both types of risks, merged with firm-bank
matched Danish register data that are representative of all types of firms, ranging from listed
large firms to non-listed small and medium-sized companies (SMEs).

It remains an empirical question whether firms’ exposure to climate risks affects credit
outcomes. Existing studies provide evidence that global banks have begun to respond to
climate risks, largely based on syndicated loans to listed firms (Kacperczyk and Peydró,
2022; Degryse et al., 2023; Mueller and Sfrappini, 2022). In this paper, I extend the analysis
to non-listed firms, which typically includes SMEs that rely on bank credit and have less
capacity to adapt to climate risks.1 Moreover, I investigate whether banks allocate credit to
risky firms actively reducing emissions, or “greening” firms. Given that banks are exposed
to both physical and transition risks, I examine not only the individual effects of each type
of risk but also how these risks interact with each other.

This paper investigates the question in the context of Denmark for two reasons. First,
using a unique credit register that provides information on the universe of bank loan rela-
tionships, I match firms with banks and link their employer-employee data to evaluate credit
evolution over nearly 20 years. Second, Denmark has substantial variations in both phys-
ical and transition risks. Regarding physical risks, with a coastline spanning 7300 km and

1According to the OECD, SMEs represented 98.7% of all enterprises and accounted for 39.1% of all full-
time employees in Denmark in 2019. It is not clear ex-ante whether the same results in the syndicated loan
market apply to non-listed firms. On the one hand, these firms may be penalized more as they tend to be
riskier and have less capacity to adapt to climate risks compared to large, listed firms. Additionally, they
rely more heavily on bank credit due to the difficulty of accessing other external financing options, such as
corporate bonds. On the other hand, banks may not yet be concerned about the climate risks’ impact on
nonlisted firms, as large firms are more likely to be exposed to transition risks, given that climate policies
tend to hit them first.
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the highest elevation points reaching only 170 meters, Denmark faces increasing risks from
storms and coastal flooding due to rising sea levels and extreme precipitation. and extreme
precipitation.2 Regarding transition risks, both the Danish government and the European
Union have implemented proactive measures aimed at reducing emissions and improving
energy efficiency. For instance, the International Energy Agency has documented that over
200 policies have been implemented during the same period to achieve these goals.

The main dependent variables in the empirical analysis are credit allocation (lending)
outcomes, measured by loan growth (intensive margin), and the likelihood of initiating new
loans (extensive margin). The key independent variables capture firms’ exposure to two
types of climate risks. Specifically, to proxy for physical risks, I construct a novel risk indic-
ator that varies over time at a fine geographical unit, covering over 2,000 Danish parishes.3

This indicator combines flood risk projections with historical data on extreme precipitation,
while also accounting for geographic spillover effects. The underlying assumption is that
extreme weather events, like heavy precipitation and floods, directly reflect climate change
impacts and are therefore more likely to raise banks’ awareness and shift their perception of
climate risks (Gu and Hale, 2023). To measure transition risks, I interact firm-level energy
intensity (scope 2 emission intensity) with industry-level environmental taxes, a proxy for
climate-related policy stringency. This measure allows for capturing the vulnerability of high
emission-intensive firms to stricter environmental regulations over time.4

To identify the impact of climate risks on credit allocation, I exploit variations in physical
risks across time and parishes and variations in transition risks across firms, time, and indus-
tries using fixed effect regression models. All climate risks measures and control variables
are lagged to avoid reverse causality. To compare the individual effects of the two risks, I
include both risk measures in the same model. My main identification strategy to examine
the impact of physical risks relies on the assumption that extreme precipitation variations
and floods are largely driven by nature and can be considered exogenous (Dell et al., 2014).
Transition risks, however, are less exogenous, as they are firm- or industry-specific. There-

2For instance, the Danish Meteorological Institute (DMI) reports that over 40 storms have battered the
country in the past three decades, with at least 10 of these storms leading to natural disasters that caused
severe damage to homes, infrastructure, farmland, and human lives. A recent report from the Technical
University of Denmark (DTU) has estimated that the cost of flooding could reach DKK 406 billion over the
next 100 years, see http://bit.ly/3Cu6gMq.

3This is an improvement compared to the broader 50 km x 50 km grid cell resolution used in existing
databases, which corresponds to fewer than 50 geocodes in Denmark, e.g., GAME-LIGHTS, while The
Emergency Events Database (EM-DAT) often misses the specific geo-locations for the events in the case of
Denmark.

4In a refinement, I also consider alternative emission measures including industry year level scope 1
emissions, and alternative measures for policy stringency such as energy-related taxes or changes in climate-
related policies.
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fore, I gradually saturate the model with a complete set of fixed effects to absorb unobserved
heterogeneity and alleviate concerns about omitted variables or spurious effects, in the spirit
of Khwaja and Mian (2008), Jiménez et al. (2012), and Jiménez et al. (2014). In the most
saturated model, I incorporate parish fixed effects to account for unobserved location-specific
factors, 2-digit industry-year fixed effects for industry-specific shocks, bank-year fixed effects
for unobserved bank supply shocks, and firm-bank fixed effects to control for endogenous
matching.5 Therefore, the identification relies on exploiting credit evolution for the same
firm-bank pair within the same location and industry, in response to the change of climate
risks over time. As I add more granular fixed effects, the estimated effects decrease, with
the most saturated model providing a lower bound for these estimates.6

The main empirical analysis suggests that firms’ exposure to higher physical or transition
risks is associated with lower loan growth. Specifically, a one standard deviation increase
in a firm’s exposure to physical risks, results in a 1.1%-1.4% reduction in loan growth,
representing about 8%-10% deviation from the sample mean.7 Meanwhile, the impact of
transition risks is slightly larger, a one standard deviation increase in transition risks is
associated with an about 1.6%-2.2% decrease in loan growth, representing 11%-16% deviation
from the mean.8 Those results echo the findings in the syndicated loan markets. On the
extensive margin, I find only higher physical risks are associated with a lower likelihood
of receiving new credit. In an extension to the baseline analysis, I use alternative credit
outcomes and find that banks also adjust their relationships with firms but no evidence of
adjusting the pricing of existing loans yet. The results hold when I focus on the tail of
physical and transition risks using extreme dummies. The baseline analysis is also robust to
specific choices of variables, econometric specifications, and subsamples.

I further examine the role of the “greening” firms and the interaction of two risks. The
results support that more credit is allocated to these risky or initially “brown” firms that
engage in climate adaptation or mitigation, positive evidence in banks’ engagement in green
transition. When it comes to the interaction of two risks, I find evidence that banks tend to
favor firms with lower interaction (or compounded) risks, indicated by positive coefficients for
extremely low-risk dummies. In other words, the observed negative effects can be mitigated

5Note I cannot add parish-year fixed effects and firm-year fixed effects as they would absorb the variations
of the main variables of my interests.

6One threat to the identification of physical risks comes from firms relocating away from high-risk areas,
I therefore exclude these firms in a refined model. To mitigate reverse causality in transition risks, I use a
base-year approach in a refinement, measuring energy intensity in the first year a firm appears in the sample.

7Physical risks: mean 0.99, sd 1.162; loan growth: mean -14.225%, sd 117.261. This effect only translates
to about 0.1 change in standard deviation, which is relatively modest given the large variability or dispersion
in loan growth.

8Transition risks: mean 26.678, sd 150.140; loan growth: mean -14.225%, sd 117.261. Similarly, this effect
translates to about 0.1 change in standard deviation.
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when firms face low levels of both physical and transition risks.
In the heterogeneity analysis, I examine which factors at the firm or bank-level may

amplify the observed effects. On the firm side, I find that more constrained firms (e.g., small
and high-leveraged firms) are more negatively affected. This is consistent with the idea that
those constrained firms are riskier with higher asymmetric information (Hadlock and Pierce,
2010; Jiménez et al., 2014; Laeven and Popov, 2023), and banks may divest from those firms
to avoid compounding risks (Dunz et al., 2023). On the bank side, I find that observed
reductions in credit are more pronounced for banks with repeat lending relationships and
high exposure to risks, calculated based on the loan-weighted average of climate risks among
their client firms. This finding supports the notion that banks have an information advantage
when dealing with existing clients (Petersen and Rajan, 1994; Diamond, 1991; Sharpe, 1990;
Rajan, 1992), and that highly exposed banks may be more proactive in managing these risks.
Lastly, banks specialized in brown industries, measured in the spirit of the specialization
measures in Paravisini et al. (2023), are more likely to increase lending, consistent with the
findings from Laeven and Popov (2023) and Degryse et al. (2020).

Given that the observed credit outcomes can be driven by both the demand (firm) and
supply (bank) sides, a natural question arises: which side plays a bigger role? Distinguishing
between credit supply and demand is not an easy task, and I acknowledge the challenges
involved, as discussed in the empirical banking literature (Khwaja and Mian, 2008; Jiménez
et al., 2020; Degryse et al., 2019). Nevertheless, leveraging rich firm-level data, I attempt
to conduct a set of empirical tests on the relationship between climate risks and firm-level
indicators to shed light on the relative importance of the two sides. First, on the credit
demand side, I test whether climate risks are linked to lower firm growth, resulting in re-
duced credit demand, which is proxied by various firm-level growth indicators. However,
the empirical evidence does not support this channel.9 Second, on the credit supply side, I
apply the method proposed by Degryse et al. (2019), which controls for local credit demand
variations within the same industry, location, size, and time using ILST fixed effects. The
robust negative relationship between climate transition risks and loan growth confirms the
supply-side explanation. Finally, I explore banks’ motivations by testing the financial in-
centives (credit risk) channel, showing empirically that higher climate risks are associated
with increased credit risk, as measured by various firm-level financial stress and survival
proxies.

This study contributes to the empirical sustainable banking literature in the following
9Specifically, I do not observe the correlation between climate risks and investment growth, employment

growth as proxies for credit demand from firm expansion, fixed asset growth as an indicator of funding needs
for capital expenditure, and sales growth as a measure of credit demand for working capital.
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ways. First, unlike existing studies that are mostly based on syndicated loans to large
publicly listed firms (Javadi and Masum, 2021; Kacperczyk and Peydró, 2022; Reghezza
et al., 2022), which only account for a small share of the total credit market, this study
complements the literature using a more representative sample of firms and banks. Second,
compared with most studies that focus only on physical risks (Meisenzahl, 2023; Aslan et al.,
2022) or transition risks (Ginglinger and Moreau, 2023; Mueller and Sfrappini, 2022; Sastry
et al., 2024), I provide a more complete evaluation of climate risks by examining both risk
types and their interactions using novel, granular risk measures. Third, this study responds
to the concerns raised by policymakers regarding the potential financial stability concerns
posed by climate risks (ECB, 2021b; Fed, 2021). I also provide evidence of banks’ engagement
by looking at firms “greening” efforts, an aspect that has largely been overlooked. Finally,
the results add to the literature on the climate risks implications for firms, suggesting climate
risks may negatively affect firms via the bank financing channel.

The remainder of this paper is organized as follows: I begin with a review of the liter-
ature in Section 2.1 and outline the conceptual framework and hypotheses in Section 2.2.
Section 3 presents the data and summary statistics, followed by the empirical strategy dis-
cussed in Section 4. The empirical results are detailed in Section 5. Finally, a discussion
and conclusions of the paper are reported in Section 6.

2 Related Literature and Conceptual Framework

2.1 Related Literature

This paper relates to four strands of research: 1) transition risks and the credit market, 2)
physical risks and the credit market, 3) the implications of climate risks for the banking
industry, and 4) the implications of climate risks for firm performance and behavior. In this
section, I provide an overview of each literature strand and explain in detail how this study
contributes to each.

The first research strand examines the implications of transition risks in financial markets,
specifically within the credit market. Unlike the extensive literature on other markets, such
as the equity market (Bolton and Kacperczyk, 2021, 2023; Pedersen et al., 2021; Pástor
et al., 2022; Hsu et al., 2023), options market (Ilhan et al., 2021), real estate market (Giglio
et al., 2021), and bond market (Seltzer et al., 2022; Flammer, 2021), there are relatively
fewer studies in the bank credit market.10 Most studies in this area focus on asset pricing
aspects of transition risk, primarily based on syndicated loans, which represent only a small

10For more details, see Appendix B.1.
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share of the total credit market, with mixed evidence is found in this line of work, e.g.,
Fard et al. (2020a); Delis et al. (2024); Degryse et al. (2023); Antoniou et al. (2020).11 The
literature investigating the implications of transition risks on banks’ credit supply (quantity
adjustment) is rather sparse. A few notable exceptions are Kacperczyk and Peydró (2022)
and Reghezza et al. (2022), who find banks allocate less credit to large corporations with
higher carbon emissions in the syndicated loan market and Mueller and Sfrappini (2022)
find that the effects depend on the borrower’s region. In contrast, Giannetti et al. (2023)
find evidence of greenwashing within the European banking sector, and Mésonnier (2022)
suggest that French banks continue to lend to SMEs in carbon-intensive industries. Some
scholars also shed light on the channels. Banks’ behaviors can be driven by local beliefs
and regulatory enforcement (Erten and Ongena, 2023), or financial risks associated with
regulation and banks’ preferences for sustainable lending (Mueller and Sfrappini, 2022).
Unlike most of those studies that focus on syndicated loans to publicly listed firms, this
paper contributes to the literature by analyzing climate risks in bank credit supply based
on a more representative sample of matched firms and banks for almost 20 years.12 This
rich data allows me to capture a broader spectrum of the credit market, including small
banks and SMEs, and to control for more granular fixed effects, accounting for unobserved
firm-bank heterogeneity.

Second, this paper contributes to research on the implications of climate-related physical
risks for the bank credit market. Similarly, a large body of literature focuses on how physical
risks, proxied by indicators such as climate-related natural disasters, are priced in the credit
market (Javadi and Masum, 2021; Garbarino and Guin, 2021) or other financial markets
(Goldsmith-Pinkham et al., 2015; Nguyen et al., 2022).13 Among a few studies that relate
to credit provision, mixed results are offered. For example, Meisenzahl (2023); Faiella and
Natoli (2019), and Aslan et al. (2022) suggest that banks reduce lending to areas more
impacted by climate change after 2015. In contrast, evidence shows that when local demand
increases after natural disasters, multi-market banks reallocate capital (Cortés and Strahan,
2017) and increase recovery lending to firms within affected counties (Koetter et al., 2020;
Ivanov et al., 2022).14 This study contributes to this literature by using a more granular
measure of physical risks that includes geographic spillover effects, and by integrating both

11More details in Appendix B.2.
12Notable exceptions include Takahashi and Shino (2023) and Mésonnier (2022), who focus on Japan and

France, respectively, and Giannetti et al. (2023); Sastry et al. (2024) use euro-area credit registry data to
assess the credibility of sustainability disclosures and voluntary lender net-zero commitments.

13See more details in Appendix B.
14Previous studies also suggest the existence of a cross-country lending channel: domestic banks increase

cross-border lending to firms in countries with lighter environmental policies when facing stringent regulations
in their home country (Benincasa et al., 2022; Laeven and Popov, 2023).
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types of climate risks for a comprehensive evaluation.
Third, this study responds to the call for a better understanding of the climate risks

implications for the banking industry and the behavior of banks (Fed, 2021; ECB, 2021b;
Battiston et al., 2021). Previous studies found that banks exposed to higher climate risks
make faster adjustments to their optimal capital structure (Bakkar, 2023), and raise deposit
rates of bank branches both in affected and in adjacent unaffected counties (Barth et al.,
2024), make worse performance (Li and Pan, 2022) and adversely impacts overall liquidity
creation (Lee et al., 2022). In addition, there are concerns that climate risks negatively
affect the financial stability of banks (Noth and Schüwer, 2023; Jung et al., 2023) and the
entire financial system (Chabot and Bertrand, 2023; Battiston et al., 2021). I contribute
to the literature by examining banks’ adjustments in lending, providing evidence that they
divest from risky firms and allocate more credit to “greening” firms. This responds to the
concerns raised by central banks that banks may not fully internalize climate-related risks,
potentially adversely impacting financial stability (ECB, 2021a,b; Fed, 2021). This study
also opens future research avenues regarding banks’ real impact in green transition (Degryse
et al., 2021; Lee et al., 2024).

Last, this paper broadly relates to the literature on the implications of climate risks on
firm performance and behaviors. Physical risks induced by climate change, such as sea level
rise (SLR), drought, and floods are examined by Huang et al. (2018, 2022); Kling et al.
(2021); Pankratz et al. (2019); Hong et al. (2019); Huynh et al. (2020); Ginglinger and
Moreau (2023); Elnahas et al. (2018) and the effects of transition risks using proxies such
as firms’ GHG emissions, carbon emissions, and ESG scores are explored by Nguyen (2018);
Reboredo and Ugolini (2022); Bolton and Kacperczyk (2021); Krueger (2015); Ardia et al.
(2022). Overall, previous study finds that climate risks adversely impact firm performance
and increase operational, financial, and default risks. The results add to the literature
and suggest one channel that climate risks may negatively affect firms: the bank financing
channel. Firms with higher exposure to climate risks (both physical and transition risks)
may face more challenges in accessing bank credit.

2.2 Conceptual Framework and Hypotheses

The study aims to investigate the relationship between climate risks and credit allocation.
Given I only observe equilibrium outcomes, specifically, the quantity of credit banks allocate
and the total credit received by firms, both the supply side (banks) and the demand side
(firms) may influence total credit allocation. As a result, the net effects are unclear ex-ante
and the anticipated sign could be positive, negative, or inconclusive, as shown in Figure D.1.
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In this section, I conceptually show the potential theoretical mechanisms of the supply and
demand sides at play and highlight a few hypotheses to guide my empirical work.

First, one possible outcome is that I do not observe any credit adjustment, possibly due
to banks’ preference in maintaining their practices due to high adjustment costs, or banks’
legacy positions in brown firms (Degryse et al., 2020). For instance, some papers have shown
banks do not do as they say, despite increasingly marketing themselves as “green”. (Giannetti
et al., 2023; Sastry et al., 2024; EBA, 2023). Alternatively, the positive effect and negative
effects of climate risks may cancel out and no credit adjustment is observed.

This points to the following hypothesis.
H1: No credit adjustment to firms with high climate risks exposure.

Second, another possibility is that higher exposure to climate risks is positively related to
credit outcomes. This can be driven by firms engaging in climate adaptation and mitigation,
or “greening” firms. Empirical evidence suggests that climate risks may induce firms to
participate in green innovation activities to reduce emissions (Miao and Popp, 2014; Gramlich
et al., 2020; Liu et al., 2024), and thus demand more credit. In addition, firms tend to seek
more credit following natural disasters for financing post-disaster recovery efforts (Cortés and
Strahan, 2017; Koetter et al., 2020; Ivanov et al., 2022). Moreover, from the supply side,
as firms with high climate risks exposure are associated with high credit risk, banks might
be motivated to engage with and support these firms in mitigating risks by maintaining a
consistent flow of credit.

This discussion of existing theories leads to another hypothesis.
H2: More credit is allocated to firms with high climate risks exposure but “greening” firms.

Last, higher exposure to climate risks may be negatively related to credit outcomes,
as observed in the syndicated loan market (Kacperczyk and Peydró, 2022; Mueller and
Sfrappini, 2022). The negative outcome can be driven both by the demand side and the
demand side. To evaluate the relative importance of each side, I split the last hypothesis
into two sub-hypotheses. On the demand side, physical and transition risks may adversely
affect the fundamental operations of businesses, and consequently, lower firm growth and
credit demand (Huang et al., 2018; Kacperczyk and Peydró, 2022; Bolton et al., 2019).

This points to the following hypothesis:
H3A: Less credit is allocated to firms with high climate risks exposure, due to lower firm

growth.

Another driver for the negative effect comes from the supply side: banks may have finan-
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cial incentives to divest from risky firms as climate risks are associated with the probability
of default and the loss given the default (Huang et al., 2018; Kabir et al., 2021). Conceptu-
ally, in a theoretical Modigliani–Miller world without any frictions (Modigliani and Miller,
1958), banks should not be concerned about their clients’ exposure to climate risks if they
can perfectly price in these risks and be fully insured. However, due to market frictions,
banks should take into account climate risks because existing credit risk models may fail to
account for tail-risk events, such as sudden and unexpected environmental policy changes
(transition risks) or acute natural disasters (physical risks ) (Schubert, 2021; Huang et al.,
2021; Beyene et al., 2021; Garbarino and Guin, 2021), therefore, banks might simply reduce
or cease lending to risky firms.15

Those discussions point to the following hypothesis.
H3B: Less credit is allocated to firms with high climate risks exposure due to banks’ credit

risk concerns.

Testing H3A and H3B will help assess the relative importance of supply-side versus
demand-side factors. Evidence supporting the H3A hypothesis would indicate the demand
side story, while evidence supporting the H3B hypothesis would point to the supply side ex-
planation and indicate banks’ divesting strategies from risky firms (Kacperczyk and Peydró,
2022; Degryse et al., 2023).

3 Data
The data is based on several administrative registers containing banks’, firms’, and workers’
information collected by Statistics Denmark and merged with external data to map non-
financial firms’ exposures to physical and transition risks. The final dataset matches the
universe of bank loans that linked Danish banks and firms. This section provides a detailed
description of different data sources and descriptive statistics.

15Banks may have both financial and non-financial incentives, aligning with the “values” versus “value”
considerations defined by Starks (2023). Besides credit risk concerns, other non-pecuniary considerations
may also play a role. For instance, a bank’s leadership team may prefer supporting green businesses that
reflect their values (Bu et al., 2023). Due to the difficulty in quantifying those factors, I do not empirically
test non-financial channels in this paper.
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3.1 Danish Administration Data

3.1.1 Employer-employee data

The starting point is to construct matched employer-employee data based on several registers
administered by Statistics Denmark. Firm-level information is collected from general firm
statistics (FIRM) and firm-level accounting statistics (FIRE). FIRM covers the universe of
private-sector firms from 1995 to 2019 and includes detailed information on firm character-
istics, such as size, age, capital, revenue, location, and industry affiliation. FIRE provides
detailed accounting information at the firm level, particularly on firms’ energy purchases for
heating and production, which will allow me to measure transition risks.16 To add workforce
composition characteristics at the firm level, I use the Integrated Database for Labor Market
Research (IDA), which contains detailed demographic and employment information for all
individuals employed in the recorded population of Danish firms, at both the firm and plant
levels. Using the Firm-Integrated Database for Labor Market Research (FIDA), each worker
in IDA can be linked to every firm in the FIRM and FIRE datasets using a unique identifier,
enabling me to create employer-employee matched data covering a representative sample of
firms and their workers. The combined data allow me to construct several important control
variables for the empirical analysis, such as firm size, return on assets (ROA), leverage ratio,
and firm age, bank size. I report my findings with and without these controls, as some firm
and bank characteristics could be endogenous.

3.1.2 Credit data

To link firms with banks, I exploit a unique database based on tax records that report the
account-level data for the universe of bank loan relationships available at Statistics Denmark.
Every year, all Danish entities that have extended credit during the previous 12 months are
requested to report to the Danish Tax Authority (SKAT), including the account’s number,
type, and balance, together with its ownership status and the sum of interest payments on
December 31st of each year. Since these reports are used to calculate tax obligations, the
data is of high quality. I use the part of this dataset that covers firms (URTEVIRK), where
the majority of the banks are domestic banks. Using unique banks’ and firms’ identifiers, I
link each loan account to the corresponding banks and borrowing firms, which further enables
me to merge credit information with employer-employee matched data.17 With the resulting

16I deflate all monetary values using the GDP deflator provided by Statistics Denmark (pris112), with
2015 as the base year.

17Specifically, on the bank side, using unique bank ID variables (op_se_nr), I link the credit data to the
employer-employee data to obtain firm and worker information at the bank level, including the total number
of employees in the bank, affiliated industry, and locations, etc. To validate the credit data, I tabulated some
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dataset, I am able to observe the bank loans with the characteristics of the corresponding
banks and firms. Following Hviid et al. (2022); Renkin and Züllig (2021), I collapse the raw
data at the firm-bank-account-year level to the firm-bank-year level by taking the sum of
the loan account balance and interest payments, to match the frequency of other important
variables.

3.1.3 Sample constructions

To arrive at my final sample, I restrict the data in different ways. At the bank level, I drop
micro banks with less than 50 employees.18 At the firm level, I drop firms with fewer than
10 employees from FIRM and FIRE registers as accounting information for micro firms may
not be completely reliable. I also exclude firms operating in the financial industry, as these
companies tend to leverage differently. Finally, to account for possible measurement errors,
I drop a few observations with negative values for account balance and interest payment.
Figure D.2 shows the number of firms and banks in the final sample over the sample period.
One interesting observation is that the banking sector has been consolidating in the aftermath
of the 2007-2008 global financial crisis (GFC), as indicated by the number of banks steadily
declining since 2008. The key descriptive statistics for the final sample are presented in
Table 1.

3.2 Exposure to climate risks

Banks are mainly indirectly exposed to physical and transition risks through the firms to
which they lend.19 This section details how I measure these two key independent variables:
firms’ exposure to physical risks and transition risks.20

3.2.1 Physical risks data

First, to measure firms’ exposure to physical risks, I construct a risk indicator that varies
over time at the local parish level by combining historical extreme precipitation and forward-

key descriptive statistics. Notably, I detect that the majority of the observations are ordinary debt in a bank
and are associated with two-digit NACE sector code 64 (Financial service activities, except insurance and
pension funding) after the match.On the borrowing firm side, I match employer-employee data with credit
data using the unique firm identifiers (cvrnr) to obtain the characteristics of the borrowing firms.

18This is because there are a large number of micro banks that only account for a small share of total
lending and the data for those micro banks may not be accurate.

19Transition risks can also include technological risks and shifts in consumer demand that lead to stranded
assets. However, following the literature, I primarily focus on policy risks, as the other two are more difficult
to quantify.

20One concern is the unavailability of the internal data that banks use to assess climate risks. Nevertheless,
I rely on publicly available information and firm-level data that are accessible to banks.

12



looking flood risk, while also accounting for geographic spillover effects.21 In the following
section, I will document the two important data sources and the model to map firms’ exposure
to physical risks.

Extreme precipitation data Using historical weather data to measure exposure to cli-
mate change is widely adopted in the existing literature due to its exogenous variations
within a specific area over time (Dell et al., 2014; Hsiang, 2016; Lemoine, 2018). Given
extreme weather occurrences such as extreme rainfall reflect the physical risks more directly,
they are more likely to update banks’ perceptions or beliefs regarding climate risks. To cap-
ture these extreme events, I constructed a dataset that measures the frequency and intensity
of weather anomalies using raw observation data from over 200 weather stations operated
by the Danish Meteorological Institute (DMI). Given that extreme precipitation is closely
correlated with flooding, my baseline analysis focuses on extreme precipitation episodes.22

Specifically, I calculate a daily extreme precipitation indicator, νprecip
cmdt , as follows:

νprecip
cmdt =

xprecip
cmdt − xprecip

cm

σprecip
cm

where c denotes the climate station, m the month, d the day, and t the year. The indicator is
calculated within each climate station c, by subtracting the monthly average precipitation,
xprecip
cm , from the daily precipitation, xprecip

cmdt , and dividing the difference by the corresponding
monthly standard deviation, σprecip

cm . Given this indicator captures both positive and negative
precipitation anomalies and only positive precipitation anomalies may lead to floods, I define
extreme precipitation events as νprecip

cmdt > 2.23

I then count the occurrence of such extreme events for each parish p in year t, denoting
it as freqpt.24 The extreme precipitation events across parishes and years have a mean
frequency of 16.44 (std. dev. = 5.68) and have been increasing over the sample period.

This relative extreme precipitation approach offers a more exogenous measure, compared
with the absolute extreme. This is because the variations in relative precipitation shocks

21A parish is a small administrative area in Denmark that includes several villages or localities. Established
formally in 1841, these parishes have had few changes since then. Currently, Denmark has about 2,141
parishes.

22Some raw weather data are observed hourly, while others are recorded every 10 minutes. I aggregated
the raw data to the daily average and constructed the daily weather anomalies, following the method in
Felbermayr et al. (2022).

23Notably, when I set the indicator threshold below -2, I did not identify any drought events in my data
over the sample period.

24In some parishes without a weather measurement station, each parish is assigned to the closest weather
station. Using the detailed locations of over 300 stations, I map each climate station to the neighboring
parishes using the geo-weighting indicator described in the Section 3.2.1.

13



arise from within a location and month, which addresses the concern that by nature, some
locations or seasons may experience higher rainfall and volatility. For instance, the same
volume of precipitation in one place may appear normal and an anomaly in another, even if
observed simultaneously, and firms can already anticipate and adapt to these strategically.

Projected flood risk data Flood risk is a primary source of physical risks for countries
with extensive coastlines and low altitudes, such as Denmark. It can cause substantial eco-
nomic damage, as numerous investments, including firm factories and residential properties,
are situated in flood-prone areas.25 Flood risk data is collected from the Technical University
of Denmark (DTU) and the Danish Meteorological Institute (DMI), which project a fore-
cast of flood occurrences and magnitudes across Denmark at a resolution of 200×200 meter
grid cells. Notably, the flood risk projection data incorporates both historical and forward-
looking perspectives as the simulations utilize historical data and future climate scenarios.26

For the baseline scenario, I aggregate this detailed data to the parish level by calculating
the proportion of each parish exposed to 100-year flood events over a 20-year horizon un-
der IPCC RCP 4.5 scenario and denoted as flp, see the flood map in Figure D.3.27 Not
surprisingly, the risk is concentrated in areas close to the coast and lakes.

The flood risk map reflects, in short, whether a given parish is likely to be flooded given
its geography. However, since the flood risk data flp is static and only has cross-sectional
variation, I then interact it with the frequency of historical extreme precipitation freqpt to
add a dimension of time variation (i.e., I in the equation below). The idea is that if a parish
gets extreme rain and at the same time is classified as very likely to be flooded given its
geography, then I assume that the parish is likely flooded.

Physical risks indicator To account for geographic spillover effects, after interacting
the static flood data with historical extreme precipitation (i.e., I in the equation below), I
construct a physical risks indicator for a parish p in year t using a distance-weighted sum
of I from the parish’s surrounding areas. This method has become standard to measure
the proximity of a given location to other locations and has its roots in agglomeration
economies.28

Specifically, Physical riskspt for each parish p and year t is calculated as:
25For instance, Danmarks Nationalbank estimates that between 0.9% to 1.2% of Danish homes are cur-

rently exposed to flood risk, a figure projected to nearly double by 2071 (Mirone and Poeschl, 2021).
26Specifically, these projections are based on geographic features, climate data, water level statistics, and

sea level estimates, see Morten Larsen (2021).
27A 100-year flood event or return period indicates that a storm of this magnitude is expected to occur,

on average, once every 100 years. Further details can be seen in Thomson et al. (2011).
28See De Borger et al. (2019) as one example using a similar method with Danish data.
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Physical risks indicatorpt =
R∑
r

Irte
−δxpr

where Irt = flr × freqrt

for parish p, year t, and surrounding parish r.

In short, the variable Physical risks indicatorpt aggregates extreme precipitation and flood
exposure for all surrounding parishes r, using geographic distance and the magnitude of the
events as the weight. Specifically, the variable Irt represents physical risks as the product
of extreme precipitation and flood risk for a neighboring parish r in year t. The weight for
parish r is computed as e−δxpr , where e−δxpr is a function of the decay parameter δ and the
Euclidean distance xpr in kilometers between parish p and r. Appendix D visually illustrates
the forms of the weight function e−δxpr for different values of δ and the shortest distance x.
Given decay parameter δ reflects the extent to which the effects of a climate event can extend
to neighboring parishes, I initially set δ to 0.06 which makes economic sense in the baseline
measure 29 Finally, a firm’s exposure to physical risks then corresponds to the physical risks
of the parish where its main headquarters is located.30

There are three major advantages of using this risk indicator. First, it allows for incorpor-
ating the geographical spillover effects of extreme climate events. Specifically, those events
often have consequences beyond the boundaries of one specific parish and can indirectly af-
fect neighboring areas, depending on the magnitude of the events. Second, it measures risk
exposure at a much smaller geographical area, i.e., for over 2000 Danish parishes. Third, it
aggregates the risks at a level that can be safely considered exogenous, as the parish-level
aggregation dates back to the Middle Ages.

Figure D.9 visually depicts substantial variations in physical risks across different geo-
graphical locations in the year 2009, as well as the time variation in physical risks in the
past decades from 2009 to 2019. Notably, the west coast and southern part of Zealand have
experienced higher physical risks and changes in physical risks compared to other areas.

29δ = 0.06 indicates that neighboring parishes have a weight close to 1, while a parish at a distance of
10 km weights 0.55, and another parish at a distance of 100 km weighs 0.002. Considering the uncertainty
surrounding an appropriate decay parameter, in refinement, I show the robustness of the results to varying
decay parameter values, as shown in Table A2.

30I include a multi-establishment dummy to control for the fact that some firms have different establish-
ments.
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3.2.2 Transition risks data

Second, to measure firms’ exposure to transition risks, I interact firm-level energy intensity
with environmental tax. The assumption is that certain firms and industries with higher
energy intensity (therefore higher emissions) are likely to be exposed to higher transition risks
as climate policies and regulations tend to target them (Gu and Hale, 2023). The section
below details the two important data sources that capture the firm emission intensity and
climate policy stringency to measure transition risks.

Energy intensity data The starting point is to identify those polluting firms with higher
energy intensity. Firm energy purchases and consumption data is from the FIRE register,
which includes the expenses for energy purchases (for heating and production) and expenses
for electricity, oil, gas, and district heating at the firm level.31 This information enables
me to measure scope 2 emissions at the firm level over an extensive sample period. Given
banks’ unique position as lenders, they likely have access to firm-specific information, such
as energy data, through surveys or due diligence.32 To account for size differences, I further
normalize these emissions by the firm-level value added.33 Specifically, the energy intensity
for firm i in industry j at time t is calculated as follows:

Energy intensityijt =
Energy consumptionijt

Value addedijt

In short, energy intensity measures a firm’s total energy consumption, scaled by its value
added for each year. To visually show the industry variations, I aggregate the average
energy intensity at the industry level and depict the distribution of energy intensity across
industries in 2019, as illustrated in Figure D.5. Notably, the manufacturing and transport
sectors exhibit significantly higher energy intensity, while the information, communication,
and technical service sectors display relatively lower energy intensity.

31The variable is called “KENE” in the FIRE register. The amount includes i.e. expenses for elec-
tricity, oil, gas, and district heating. However, fuel expenses for registered motor vehicles used for
external transport must not be included. The amount is documented in 1,000 DKK. Further details
on the KENE variable can be accessed at https://www.dst.dk/extranet/staticsites/TIMES3/html/
ca145bb4-4483-4607-9e60-57af2fb4c8b2.htm.

32There are two concerns about this measure. First, I cannot identify renewable energy sources from total
energy consumption. Nevertheless, data from the IEA indicate that coal, oil, and gas collectively constitute
over half of the total energy supply in 2022, as depicted in Figure D.6, and, therefore, are major sources of
emissions. In addition, a large sample of firms are SMEs and lack the option to choose their energy source.
Second, I cannot access direct greenhouse gas (GHG) emissions (scope 1 emissions) and indirect scope 3
emissions at the firm level. Nevertheless, I include scope 1 emissions at the industry level in refinement, and
the results are robust to the main findings based on scope 2 emissions, as presented in Table A3.

33This is captured by the variable GF_V TV in the FIRM register. Further inform-
ation can be accessed at https://www.dst.dk/da/TilSalg/Forskningsservice/Dokumentation/
hoejkvalitetsvariable/firmastatistik/gf-vtv.
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Climate-related policy stringency data To measure a climate-related policy strin-
gency, I then use annual public environment-related tax (green tax) at a 2-digit sector level
from StatBank Denmark as a proxy. Some examples of tax bases include greenhouse gas
emissions and energy products such as fuel oil, coke, coal, and natural gas. For more ex-
amples, see Figure D.7.34 This measure reflects industry-specific real costs or risks linked to
the environment.35 Similarly, to address the issue of some industries being larger and con-
tributing to higher environmental tax, I scale the total environmental tax for each industry
by its value added.36

To be specific, Environmental taxjt is calculated as:

Environmental taxjt =
Total environmental taxjt

Value addedjt

for industry j, year t.
The distribution of environmental tax data across industries in 2019 is depicted in Fig-

ure D.8. Notably, the transport, electricity, and construction sectors exhibit comparatively
higher environmental tax costs compared to other industries. In the robustness check, I also
explore alternative measures for policy stringency, including changes in past climate policies
within Denmark and the EU, as well as total energy taxes, as shown in Table A3. Given the
environmental tax data offers more detailed variations at both the industry and year levels
and includes wider scopes, I use this as my baseline analysis.

Transition risks Putting together, the main proxy for firms’ exposure to transition risks
for each firm i in the industry j at time t is Transition risksijt is an interaction term
between firm-level energy intensity Energy intensityijt and industry-level environmental tax

34The detailed database can be found at https://www.statbank.dk/MRS1. For more information on en-
vironmental taxes, see Eurostat (2013) https://ec.europa.eu/eurostat/documents/3859598/5936129/
KS-GQ-13-005-EN.PDF. The definition of green taxes emphasizes the effect of a given tax in terms of its
impact on the cost of activities and the prices of products that negatively affect the environment. The
environmental effect of a tax comes primarily through the impact it has on the relative prices of products
and the level of activities, in combination with the relevant price elasticity.

35Two concerns may arise regarding this measure. First, environmental policies may not perfectly reflect
climate change mitigation policies. However, as it serves as an essential policy tool to curb emissions, this
measure allows me to proxy for the environmental policy-related costs imposed on each industry over time.
Second, transition risks are also associated with future climate policies, making them hard to measure,
especially due to their dependence on specific climate scenarios. Nevertheless, this measure captures those
industries that pay higher environmental policy-related costs in the past and assumes those are likely to
confront higher policy risks in the future.

36The industry gross value added data is obtained from Statistics Denmark: https://www.statbank.dk/
NABP117. The results are also robust when I scale by industry real value added.
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Environmental taxjt:

Transition risksijt = Energy intensityijt × Environmental taxjt

for firm i, industry j, year t.
This approach allows for capturing firms’ vulnerability to the increasing stringency of

climate-related policies targeted at emission-intensive firms.

4 Empirical Strategy and Identification

4.1 Empirical specification and identification

In this section, I provide the main empirical specification and identification strategy to
investigate the effects of physical and transition risks on bank credit allocation. The iden-
tification exploits variations in physical risks across time and parish and transition risks
across firms, time, and industries with saturated fixed effects models. On the one hand,
the main identification strategy to tease out the impact of physical risks on bank lending is
based on the assumption that the occurrence of abnormal extreme precipitation variations
and projected flood risk within narrowly defined geographic parish units over time is largely
driven by nature and largely exogenous (Dell et al., 2014). On the other hand, given that
transition risks are measured as the interaction of firms’ energy intensity and incurred envir-
onmental taxes, they are firm and industry-specific and less exogenous to lending outcomes.
To alleviate concerns about omitted variables, I include a comprehensive set of firm and
bank-level confounding factors that may affect credit outcomes and a complete set of fixed
effects to account for potential unobserved trends and factors, including industry-year, bank-
year, and bank-firm fixed effects. By controlling for these variables and fixed effects, I can
more carefully examine the effects of transition risks on credit outcomes.

The main dependent variable measures both the intensive and extensive margin of credit
(lending) outcomes. On the one hand, the intensive margin is calculated as the loan growth
rate of firm i received from bank b in a given year t, conditional on firm bank relations being
present in both the prior and current year. Specifically, the growth rate is calculated as

(loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
×100%, reflecting changes in the volume or amount of loan balance.37

On the other hand, the extensive margin is calculated as a new loan indicator, which is a
0/1 dummy variable indicating whether a given firm i received new loans from a given bank
b in a given year.38 It is equal to 1 when the loan growth rate is positive, capturing whether

37This method of growth calculation allows for incorporating the 0 in the loan outstanding balance.
38This is also conditional on firm-bank relations being present in both the prior and current year.
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a firm gets any new credit at all, as opposed to how much credit it gets. In an extension, I
also measure the firm bank relationship changes and interest rates as alternative outcomes.

In order to compare the individual effects of the two risks, I include both risk measures
in the same regression model in the baseline analysis. To alleviate the potential reverse
causality concern, I lag all climate risks variables by one year, given credit outcomes are
measured annually. This accounts for the possibility that extreme events and environmental
tax changes may occur late in the year, and credit decisions typically experience substantial
lags. I also consider firm and bank-level controls, such as size and leverage ratio, all lagged
by one year for the same reason to avoid reverse causality. Standard errors are clustered at
the firm level to account for potential serial correlation within the same firm, and the results
are robust to other clustering levels, including at both the firm and bank levels (multi-way
clustering), where I allow serial correlations within both firms and banks (See results in
Table A6). Control variables, summarized in Table 1, generally have expected effects and
vary in statistical significance, which is unsurprising given that different specifications include
various sets of fixed effects. For brevity, I only report the main variables of interest.

Including too few fixed effects and controls may raise endogeneity concerns while includ-
ing too many could lead to over-fitting. Therefore, I report the estimated outcomes for all
specifications, allowing for a comparison of results from the most parsimonious to the most
comprehensive model. I expect that as I add more granular fixed effects and controls, the
estimated effects will decrease, with the most saturated model providing a lower bound for
these estimates. Given the source of identification may vary depending on the set of fixed
effects and controls I include, for illustrative purposes, I carefully outline each specifica-
tion in the section below and discuss where the identification comes from in each empirical
specification.

I start with parsimonious specification, where only the physical and transition risks vari-
ables and firm (αi), bank(αb), and time/year (αt) fixed effects are included.

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1 + αi + αb + αt + ϵibt (1)

The key variables of interest are denoted as Physical riskspt−1 and Transition risksit−1.
The first variable is a proxy for physical risks that varies by parish and year, which captures
the exposure to extreme precipitation and flood risk, while the second one measures firms’
vulnerability to climate regulatory risks, varying by firm and year. Given both physical risks
and transition risks are measured on different scales, I standardize climate risks variables in
the regressions for a meaningful comparison of their relative magnitudes of the effects.

Only the most essential fixed effects αi, αb, and αt are included in Equation (1). Specific-
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ally, the vector αi is a vector of firm fixed effects that captures any unobservable firm-specific
factors that are relatively stable over time, such as firm business model, culture, managerial
quality, or risk appetite. Similarly, the vector αb is a vector of bank fixed effects that captures
any unobservable bank-specific time-invariant characteristics such as bank risk appetite and
culture. The vector αt is time-fixed effects that absorb all the time-varying trends or shocks
to business cycles, for example, macroeconomic variables including GDP, unemployment
rate, inflation, or policy rate. Finally, ϵibt is the idiosyncratic error term.

Identification in Equation (1) thus rests on exploiting two sources of variation. First,
within firm-bank variations, i.e., the credit differences over time within a given firm (bor-
rower) bank pair, in response to the change of firms’ climate risks over time, as shown in
Figure D.10. Second, within bank-time variations, i.e., the credit differences over high-
climate-risk firms relative to the low-climate-risk peers, when borrowing from the same bank
in the same year, as shown in Figure D.11.

The main coefficients of interest, β1 and β2, indicate whether a bank is more or less
likely to initiate a loan (for the extensive margin) or increase the loan amount (for the
intensive margin) for a firm experiencing a change in exposure to climate risks over time.
They also capture the credit differences between two comparable firms with different climate
risks profiles borrowing from the same bank in a given year. The expected sign of β1 and
β2 is not clear ex-ante, as there are both positive and negative forces that drive the bank
and firm side, as explained in Section 2.2. A null coefficient will be consistent with the
H1 hypothesis that no credit adjustment is observed. A negative coefficient would indicate
that less credit is allocated to risky firms, this can be due to firms’ lower growth and thus
less credit demand (H3A) or banks may supply less credit due to high credit risks linked to
physical and transition risks (H3B).

In Equation (2), I add firm-level and bank-level control variablesXit−1 and Zit−1 to absorb
those time-varying characters that capture firm credit demand and bank credit supply that
might be correlated with variables as well as lending outcomes. The vector Xit−1 denotes
a set of firm-level variables including firm size, leverage ratio, and return on assets (ROA),
while the vector Zit−1 consists of bank-level characteristics, such as bank size:

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1

+X ′
it−1γ1 + Z ′

bt−1γ2 + αi + αb + αt + ϵibt
(2)

In the next specification Equation (3), I add location (parish) fixed effects to account
for unobserved, time-invariant geographic characteristics, such as differences in productivity
and firm size across locations, that may influence credit allocation and introduce estimation
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bias. Parish fixed effects also help address endogeneity arising from firms anticipating higher
physical risks in certain areas, such as those near the sea, and consequently avoiding these
areas or relocating from high- to low-risk zones. This also addresses the concerns that certain
areas (e.g., capital city) are more productive than others as firms tend to concentrate geo-
graphically around those areas. This specification thus exploits the within-parish variation,
i.e., comparing the credit differences by a given bank b to a given firm i in the same parish
p over time:

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1

+X ′
it−1γ1 + Z ′

bt−1γ2 + αi + αb + αt + αp + ϵibt
(3)

Afterward, I saturate the model by adding industry-fixed effects αj in Equation (4) to
account for time-invariant industry-specific characters that may be correlated with both
climate risks factors and credit outcomes. This also addresses the endogeneity concerns
raised by firms that move from a brown to a relatively cleaner industry. Therefore, the
expected magnitude of the coefficients is likely to be lower compared with Equation (2), as
I control for firms moving in and out of industries and locations. The identification relies
on the evolution of lending from a given bank b to a given firm i in the same location p and
same industry j over time. The empirical specification is written as below:

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1

+X ′
it−1γ1 + Z ′

bt−1γ2 + αi + αb + αt + αp + αj + ϵibt
(4)

The next specification in Equation (5) augments the model by adding a host of high-
dimensional fixed effects. To absorb any time-varying factors common to all firms in a
particular industry, such as the industry business cycle, I include a matrix of 2-digit industry-
year dummies. I also include bank-year fixed effects that control for credit supply and thus
remove the bias that could result from these unobserved, bank-specific factors that vary over
time including banks’ financial health, internal policies regarding loan approval processes,
changing regulatory environment, etc.39

39Note that I am not able to add bank-level control variables Z ′
bt−1 in this case as they are absorbed

by bank-year fixed effects. Individual bank, industry, and year fixed effects are also absorbed by higher
dimensional fixed effects. I do not add parish-year fixed effects and firm-year fixed effects as they will absorb
the variations of the main variables of my interest.
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Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1+

X ′
it−1γ1 + αi + αp + αjt + αbt + ϵibt

(5)

Finally, thanks to the granularity of the data, I incorporate firm-bank fixed effects αbf in
Equation (6) to control for the endogenous matching between firm and bank that may affect
credit allocation, e.g., relationship lending. This teases out the differences across different
banks lending to the same firm in a given year and ensures that the identification relies on
the same firm bank group, as shown in Figure D.10. In addition, adding those fixed effects
allows me to control the bank credit supply shocks that are common across all firms with
bank-year dummies and any shocks to firm-bank pair with bank-firm dummies, and thus
control for credit demand in the spirit of Khwaja and Mian (2008), Jiménez et al. (2012),
and Jiménez et al. (2014). While I cannot add firm-year fixed effects as this will absorb the
variations in transition risks that are measured at the firm time level, I include as much firm-
level time-varying control as possible to proxy for credit demand shocks that are common
across all banks.40

Lendingibt =β1Physical riskspt−1 + β2Transition risksit−1

+X ′
it−1γ1 + αp + αjt + αbt + αbf + ϵibt

(6)

4.2 Threats to identification

Despite my efforts to add a host of fixed effects and a comprehensive set of control variables
to address the endogeneity concerns, potential threats to identification can still arise.

With respect to the exposure to future flood risk, with the variation largely coming from
across locations, I expect that firms are likely to adapt and mitigate the risks by relocating
their factories away from high flood risk zones (e.g., some areas close to the coast) or avoiding
building new offices in those areas. To address this concern, I consider a refinement in which
I exclude those firms that relocate in order to compare the credit outcomes for firms that
stay in the same locations, as presented in Table A7, in addition to adding location (parish)

40The state-of-the-art methodology to empirically identify credit supply shocks relies on the assumption
that credit demand shocks can be accounted for using fixed effects that saturate all firm time variations.
This method builds on recent literature that uses microdata to account for firm credit demand shocks that
are common across all banks with firm-year dummies and for bank credit supply shocks that are common
across all firms with bank-year dummies, as well as firm-bank dummies that control for all time-invariant
unobserved shocks in the demand and supply of credit. For examples of recent papers, see Khwaja and Mian
(2008); Paravisini et al. (2023); Jiménez et al. (2014); Chodorow-Reich (2014).
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fixed effects in one of the specifications in Equation (3).
Another concern is the reverse causality in the context of transition risks. As transition

risks measure varies from year to year, it could be driven by firms’ engagement in climate
mitigation and adaptation and, thus, reduce risk exposure. One example is that firms with
high energy intensity that are exposed to high emission tax might seek to reduce emissions
by investing in green projects after receiving bank loans, which may bias the estimation. To
reduce this reverse causality issue in the regression analysis, I include a refinement where I
measure transition risks with a more exogenous base-year approach, i.e., measuring a firm’s
energy intensity in the first year in which a firm in the sample is observed. Specifically,
transition risks, denoted as Transition risksijt, is calculated as:

Transition risksijt = Energy intensityij0 × Environmental taxjt

for firm i, industry j, year t. I present the results with the base year approach in Table A4.

5 Empirical Results
In this section, I present the empirical results based on the specifications discussed above.
The structure is as follows: I begin by presenting the baseline results for H1, examining
whether banks adjust credit allocations to firms’ exposure to climate risks (see Section 5.1)
using gradually saturated fixed-effects specifications. Next, I test H2 to determine whether
more credit is directed toward “greening” firms (Section 5.2). Finally, if a negative credit
outcome is observed, I explore the heterogeneity (Section 5.4) and test the theoretical mech-
anisms discussed in H3A and H3B (Section 5.5) to identify the key driver.

5.1 Do banks adjust credit allocation?

5.1.1 Intensive margin of lending

I first report the baseline estimation results for the effects of physical and transition risks on
the intensive margin of the lending, i.e., the loan growth rate in percentage points in Table 2.

In column 1 of Table 2, I estimate a simple model where I only include a set of dummy
variables, namely firm, bank, and year dummies. The estimates reported in column 1 high-
light two main findings. First, on average, higher physical risks are associated with lower
credit growth. Banks significantly allocate less credit to those firms located in high-physical-
risk zones than they do for firms located in low-physical-risk zones in the same year. In
addition, banks reallocate credit away from those firms located in areas with increasing
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physical risks over time. The coefficient of -1.368 indicates that a one standard deviation
increase in the physical risks of a firm’s location results in about 1.368% reduction in credit
growth in terms of absolute change.41 This reduction per standard deviation change of phys-
ical risks represents about a 10% change relative to the sample mean loan growth, which
represents a sizable reallocation of lending relative to the sample mean.42

Second, higher transition risks are also related to lower credit growth. The magnitude
of the estimated coefficient is slightly larger than the physical risks. The coefficient of 2.208
suggests that if a firm’s transition risks exposure increases by one standard deviation over
time or relatively to another firm, the credit growth is reduced by about 2.208%.43 This
represents about a 16% change relative to the sample mean loan growth.44

I then advance the model with important control variables for firms and banks in column
2, parish fixed effects in column 3, and industry fixed effects in column 4. In column 5, I
include high-dimensional fixed effects (industry-year fixed effects and bank-year fixed effects).
Lastly, I add granular firm-bank fixed effects to address the endogenous matching in column
6. As I saturate the model with more restrictions, the estimated coefficients β1 and β2 overall
decline as expected, but the coefficients remain negative and significant. Put together, a one
standard deviation increase in a firm’s exposure to physical risks, results in about 1.1%-1.4%
reduction in loan growth, representing about 8%-10% deviation from the sample mean. The
impact of transition risks is slightly larger, a one standard deviation increase in transition
risks is associated with an about 1.6%-2.2% decrease in loan growth, representing 11%-16%
deviation from the mean.

5.1.2 Extensive margin of lending

The estimation results for the extensive margin, defined as the probability of receiving new
loans, are presented in Table 3. The new loans variable is represented by a dummy variable
set to 1 if the loan growth rate is positive, indicating the likelihood of firm i receiving
new credit from bank b in a given year t. Similar to the setup above, I begin with a
simple model shown in column 1 (Equation (1)), then include additional controls in column

41Given that the mean and standard deviation of physical risks are 0.99 and 1.162 respectively (see Table 1),
a one standard deviation increase implies that the mean average goes from 0.99 to 2.152 (0.99+1.162=2.152).

42The mean and standard deviation of loan growth is -14.225% and 117.261, therefore the change relative
to the sample mean of loan growth is calculated as -1.368%/-14.225%= 10%, while the standard deviation
change of loan growth is calculated as (−1.368% − (−14.225%))/117.261 = 0.1, indicating a modest effect
relative to the overall variability of loan growth.

43A one standard deviation change in transition risks implies a considerable jump from an average of
26.678 to 176.818 (26.678 + 150.14 = 176.818), given the mean is 26.678 and standard deviation is 150.14.

44Given that the mean and standard deviation of loan growth is -14.225% and 117.261, the change relative
to the sample mean is calculated as -2.208%/-14.225% = 16%. Regarding the standard deviation change of
loan growth, it is about (−2.208%− (−14.225%))/117.261 = 0.1.
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2 (Equation (2)), and incorporate granular fixed effects from column 3 to column 6, as
specified from Equation (3) to Equation (6).

The estimates reported in Table 3 indicate that only higher physical risks are related to a
lower likelihood of receiving new credit, and the results are no longer significant after adding
granular firm-bank fixed effects. This shift indicates that the observed relationship is likely
to be confounded by other factors specific to the firm-bank relationship, such as historical
lending behavior and the quality of the firm’s link with a particular bank, which plays a more
important role in banks’ decisions to allocate credit. Additionally, although the coefficients
for transition risks are negative, they are not significantly associated with the probability of
the firm receiving new credit in any of the specifications. This suggests that banks may not
necessarily cut off initial credit and stop lending loans regardless of increased transition risk.
That could be due to relationship lending, i.e., they might prioritize maintaining existing
relationships with firms by offering new loans, regardless of their risk exposure. Instead,
they could reduce the growth of the credit, as shown in Table 2, or ask for more collateral.

All in all, the evidence rejects the H1 hypothesis and indicates that firms’ physical and
transition risk exposure affect lending primarily on the intensive margin. Specifically, firms
facing increased physical or transition risks over time experience reduced credit growth,
suggesting that banks are cutting the growth of credit allocated to these firms. It is also im-
portant to highlight that the magnitude is relatively modest, given the rather large variability
of loan growth.

5.1.3 Extension: alternative credit outcomes and extreme risks dummy

Firm-bank relationship changes and interest rate As an extension to the main credit
outcomes, I further explore other aspects of interesting outcomes, including adjustment of
firm-bank relationships and interest rates. To do so, I augment Equation (5), where the most
complete set of fixed effects are included, replace the dependent variable with measures for
relationship changes and interest rate, and present the estimation results in Table 4.

In column 1, I first estimate the effects of climate risks on entering into new relationships,
where “enter” is a dummy variable set to 1 if a firm and bank establish a relationship for
the first time. Specifically, it is defined as 1 if firm i borrows from bank b in year t but
not in the previous year t-1, i.e., (loanibt > 0|loanibt−1 = 0). Similarly, in column 2, “exit”
is a dummy variable set to 1 if a previously existing firm-bank relationship discontinues,
i.e., (loanibt−1 > 0|loanibt = 0). The significant negative coefficients show that banks are
cautious about entering into new relationships with firms exposed to high transition risks.
Additionally, if the physical risks associated with existing clients become too large, banks
may choose to exit those relationships. Put together, the results provide evidence that banks
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are adjusting their ties in response to climate risks: they are more cautious when it comes
to initiating new relationships and may choose to cut their ties with firms when the risks
become too high.

I then proceed by evaluating the interest rates (the loan prices) in column 3. Following
Jensen and Johannesen (2017), I calculate the effective interest rate for a firm i borrowing
from bank b in year t as Interest rateibt = Interest paymentibt

0.5×(Loansibt+Loansibt−1)
× 100. This variable is

essentially calculated as the sum of interest payments made in year t divided by the average
outstanding loan balance at the end of the current and previous years, where the implicit
assumption is that loan balances evolve linearly over the year.45 Column 3 shows that the
cost of loans does not significantly show a direct correlation with physical and transition
risks despite the estimated sign being positive.

Overall, the finding on alternative outcomes suggests that while banks may be cautious
in forming new relationships and more likely to exit old relationships, they do not seem to
adjust the pricing of existing loans yet.

Response to the tail of physical and transition risks In another extension for the
baseline analysis, I focus on the tails of climate risks distribution, rather than the whole
distribution. This is because the impacts of climate risks are typically related to the extreme
ends of the risk distribution, often referred to as the “tail risks”. By classifying firms into
different extreme-risk groups, I can then decompose the credit allocation among different
groups.

Specifically, I focus on both the left-hand tail (extreme low values) and the right-hand tail
(extreme high values) of the risk distribution for physical and transition risks, where I define
a high physical risks dummy variable (High PR) and a high transition risks dummy variable
(High TR) that is set to 1 if the respective risk indicator falls into the top 25th percentile
of the distribution in a given year.46 Using the following specifications, I can compare the
credit allocation among extreme-risk groups, relative to the medium-risk group.

Lendingibt =β1High PRit−1 + β2High TRit−1 + β3Low PRit−1 + β4Low TRit−1

+X ′
it−1γ1 + Z ′

bt−1γ2 + FEs+ ϵibt

45I adopt this approach as that loan maturity and the contractual interest rate are not systematically
reported in the credit data. Nevertheless, the effective interest rate captures the average rate a firm pays on
its outstanding loans over a given period and offers a measure of the accrued cost of loans.

46Similarly, the low physical risks dummy variable (Low PR) and low transition risks dummy variable
(Low TR) are then defined as 1 if the risk falls into the bottom 25th percentile of the distribution in a given
year.
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for firm i, bank b, year t, and parish p.
The estimated results are presented in Table 5. In columns 1-2, the dependent variable

is the loan growth in percentage points as intensive margin while columns 3-4 measure the
extensive margin, which is a 0/1 dummy variable indicating whether a given firm received
new loans. The signs of the point estimates for the high physical risks (PR) dummy and
high transition risks (TR) dummy are negative, whereas those for low PR and high TR are
positive. This pattern confirms the baseline analysis and suggests a reallocation of credit
away from firms with extremely high-risk profiles towards those with lower-risk profiles,
compared to firms with medium-risk exposure.

The results are robust to different definitions of extreme dummies and alternative meas-
ures of climate risks with a composite index. Specifically, I use a fixed threshold based
on the risk distribution for the entire sample to define extreme values, assuming that the
distribution is stable over the sample period, as shown in the first panel of Table A9. I also
consider a composite climate risks index that combines both dimensions of risks with equal
weights into one metric, inspired by Bakkar (2023).47 This index is essentially a discrete
variable ranging from 0 to 8, where the highest value indicates the highest level of climate
risks exposure for a firm. The second panel of Table A9 shows the results, which confirm
the main findings.

5.1.4 Alternative tests and robustness checks

In the appendix, I present several alternative tests and robustness checks to make sure that
my baseline result is not sensitive to specific choices of empirical proxies for climate risks
and bank lending, as well as to particular choices of specifications and samples.

Alternative dependent variables In Table A1, I use different measures of dependent
variables: column 1 utilizes the log of the loan amount (log(loanibt)), and column 2 em-
ploys the log difference of the loan amount in percentage points, calculated as log(loanibt)−
log(loanibt−1) × 100. This helps to address potential concerns about the presence of zero
values in the loan account balances. Taking the logarithm results, these observations are
treated as missing data. In column 3, I focus on positive loan growth, setting negative loan
growth to zero. This adjustment addresses the concern that my baseline measure of loan
growth captures both the amount of the new loan origination and the repayment speed of

47Specifically, I divide the sample into four quartiles for both physical and transition risks metrics, assigning
a score of 1 to firms in the lowest quartile, 2 in the second, and so on, with 4 for the highest quartile. This
implicitly assumes that the risk distribution is stable over the sample period. I then construct a composite
climate risks index by summing the scores for each risk dimension.
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existing loans, leading to both positive and negative growth.48 The results indicate that
most of the point estimates for β1 and β2 remain negative, although some estimates lose
significance.

Alternative climate risks variables I then look at robust definitions of the main em-
pirical proxy for physical risks and transition risks. In Table A2, I modify physical risks
measure using alternative levels of decay parameters, ranging from 0.01 to 0.1.49 This decay
parameter indicates how far-reach climate events can indirectly extend to firms located in
the neighboring areas. A lower decay parameter implies that even firms located further away
from the event locations will likely be indirectly affected. Conversely, a higher decay para-
meter captures local events where only directly affected firms in a given parish are reflected
in the indicator. The results show that the sign of the estimated coefficients for physical
risks are not sensitive to varying values of decay parameters. Notably, the magnitude of
the estimated coefficients is larger for a lower decay parameter, which suggests that banks
are more responsive to those impactful events that affect a larger area comprising several
parishes.

In Table A3, I look at robust definitions of transition risks. In columns 1-2, as an al-
ternative way to measure firms’ exposure to climate policy changes, I leverage the data
provided by Gu and Hale (2023), who count the total number of relevant climate policies
that are either in force or announced and compute the annual change of policy counts.50

I utilize the number of climate policies in Denmark and the EU and visually plot the
changes in climate-related policy counts over time in Figure D.13, with policies related
to climate mitigation and energy efficiency increasing significantly since the 2000s. A
higher number of policy changes implies tighter government intervention and more ag-
gressive political actions to combat climate change. I further interact with the change
of policy data with firm-level energy intensity to obtain exposure at the firm level, i.e.,
Transition risksit = Energy intensityit × Climate policy changet for firm i, year t.

Given that my measure of firm-level energy intensity is based on energy consump-
48While the baseline measure estimates how climate risks may impact both the amount of new loans and

existing loan repayments, in this alternative measure, I consider the scenario where only positive loan growth
is analyzed, effectively ignoring the existing loan repayment.

49I choose the values range between 0.01 to 0.1, as these are the most economically reasonable choices
given the average distance between measurement stations and the closest parishes, which is approximately
25 kilometers, varying from 10 kilometers in some areas to up to 40 kilometers in others. For example, when
δ = 0, 1, a parish 25 kilometers away has a weight of 0.08. If I choose a decay parameter that is too high, I
will not be able to capture the spillover effects across parishes.

50The policy data is obtained from the International Energy Agency (IEA), which provides information
on past, existing, and planned government policies to reduce emissions, support green energy technologies,
and improve energy efficiency, over the period from 1975 to 2021.
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tion, in columns 3-4, I alternatively measure transition risks as the interaction between
energy intensity and total energy taxes at industry-year level, i.e., Transition risksit =

Energy intensityit ×
Energy taxjt

Value addedjt
for firm i, industry j, and year t. The energy taxes include

taxes on energy products for transport purposes (e.g., petrol and diesel), energy products
for stationary purposes (e.g., fuel oils, natural gas, coal, and electricity), and taxes on green-
house gases, i.e., carbon dioxide (CO2) taxes and emissions permits (e.g., EU Emissions
Trading Scheme).

In columns 4-5, to address the concerns that firm-level energy intensity only captures
scope 2 emission, I use scope 1 emissions (GHG emissions) at the industry level, and interact
industry direct emissions with environmental taxes (both scaled by industry value added) to
capture the exposure of climate policies or regulations for those emission-intensive industries,
calculated as Transition risksjt = GHG emissionsjt

Value addedjt
× Environmental taxjt

Value addedjt
, for industry j, and year t.

In columns 7-8, I simplify my measure of transition risks by excluding policy stringency
and only include firm-level energy intensity (scope 2) as a proxy. As shown in Table A3, the
results using all of these alternative definitions of transition risks are consistent with those
from my main analysis presented in Table 2 and Table 3.

Additional results reported in Table A4 also show that the impact of transition risks is
still robust even when I use a more exogenous base year approach to measure the energy
intensity variable in the construction of the transition risks to attenuate simultaneity issues,
as explained in Section 4.2. All these refinements confirm the main findings that higher
climate-related physical risks and transition risks are related to lower credit growth.

Alternative specifications and clustering I then evaluate whether the impact of phys-
ical and transition risks on lending outcomes changes with different specifications in Table A5.
First, to take into account banks’ medium and long-run response to climate risks, I re-
estimate Equation (2) by introducing a second lag climate risks variables in columns 1-2.
The significant negative coefficients in the second lag of physical risks indicate the potential
presence of long-term effects. Next, to explore the possible existence of non-linearity in the
effects of climate risks, I also consider an additional specification in which I add the squares
of climate risks variables, as reported in columns 3-4. The sign and magnitude of the estim-
ated coefficients of physical and transition risks are similar to those from my main analysis.
Furthermore, the positive coefficients in the square term of climate risks give suggestive
evidence of a possible convex relationship between climate risks and lending. One potential
explanation is that at a very high level of climate risks, the financing needs associated with
firms’ climate adaptation or mitigation could have a dominant effect and lead to a positive
relationship between climate risks and lending. Lastly, I present the results with an altern-
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ative clustering scheme in Table A6, where I cluster the standard errors at the firm and bank
levels and allow serial correlations within both firms and banks. The result suggests that
the main result is not sensitive to how I cluster the standard errors.

Alternative sub-samples I proceed by repeating my main test using various robust
samples to make sure that the results are not driven by specific groups of firms or banks.
In Table A7, I look at various sub-samples at the firm level. Columns 1-2 present the main
results using a sample of incumbent firms in the last 10 years (2009 to 2019). Columns
3-4 exclude new entrant firms that were formed in the sample period, while columns 4-5
exclude firms that exit during the sample periods to test the sensitivity of the results to firm
dynamics. In columns 7-8, I address the potential concern that the results are driven by
those highly productive firms, as those firms might have better access to credit or better risk
management practices. Columns 9-10 exclude a sample of firms that relocate to address the
concerns that firms may respond to increasing physical risks by relocating to other low-risk
areas, as explained in Section 4.2. Finally, I exclude firms located in Copenhagen to address
concerns that a large share of firms in the capital may drive my main results.51

I further explore the sensitivity of the results to different sub-samples of banks in Table A8.
In columns 1-2, I exclude small banks with less than 200 employees as those small banks
may be more focused on niche markets or local communities and have different risk profiles
and less sophisticated risk management processes. In columns 3-4, only incumbent banks
in the last 10 years (2009 to 2019) are included, while columns 5-6 exclude banks that exit
during the sample periods to make sure that the results are not confounded by banks’ entry
and exit dynamics. In columns 7-8, I exclude banks in the capital region of Denmark to
test whether the main findings are driven by regional factors specific to the capital areas.
Columns 9-10 exclude a sample of banks with only one establishment to make sure the main
results are influenced by the operational scale or geographic concentration of the banks.

All in all, I find that the main effect documented in this paper survives in all of those
alternative samples and confirm that it is not driven by specific firm-level and bank-level
sample characteristics.

5.2 Do banks allocate more credit to risky and “greening” firms?

So far, the empirical findings reject H1 and suggest that banks lower credit growth to firms
with high exposure to physical or transition risks. However, these risky or initially “brown”

51I further explore the heterogeneity of the observed effects across different regions. The effects of physical
risks are more pronounced in the capital city regions (“Region Hovedstaden”) and Mid Jutland Region
(“Region Midtjylland”) among 5 regions of Denmark, as shown in Table A10.
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firms may more intensively engage in climate adaptation or mitigation, such as green innov-
ation activities (Miao and Popp, 2014; Gramlich et al., 2020; Liu et al., 2024), to hedge their
risks, which may be viewed as positive signals by banks. Therefore, I proceed with testing
H2 and see whether banks support those risky firms that show evidence of “greening”. In
other words, while firms with higher risk exposures generally experience lower credit growth,
those that actively participate in climate adaptation and mitigation may be viewed more
favorably by banks.

I identify “greening” firms with two proxies. First, a dummy variable equal to one if
a firm shows reductions in energy intensity compared with the previous year. Second, a
dummy variable equal to one if a firm applies for a green patent, to measure engagement in
green innovation activities. The data is collected from a register of patent applications sent by
Danish firms to the European Patent Office (PATSTAT), similar to Calel and Dechezleprêtre
(2016) and Li et al. (2021). A patent application is defined as green if its Cooperative Patent
Classification (CPC) is either in category Y02 or Y04S. 52 Furthermore, a patent is classified
as green, if its International Patent Classification (IPC) is under the categories that refer to
climate change mitigation and adaptation technologies.53

In Table 7, I present estimation results based on versions of Equation (2), where I include
an interaction of physical and transition risks with the proxies “greening” firms. In columns
1-2, I present the credit outcomes for those firms that show improvement in their energy
intensity. The positive coefficients in the interaction terms indicate that improving energy
intensity can partially offset the negative effects of their risk exposures. In columns 3-4, I
show the credit outcomes for firms with green patent applications. Overall, the evidence
supports the idea that while banks divest from firms with high climate risks exposure in
general, they also consider those firms’ engagement in climate risks adaptation or mitigation
as a positive signal, leading them to allocate more credit toward these risky and “greening”
firms.

52Category Y02 covers selected technologies that control, reduce, or prevent anthropogenic emissions
of greenhouse gases in the framework of the Kyoto Protocol and the Paris Agreement. It also includes
technologies that allow adapting to the adverse effects of climate change. Category Y04S refers to systems
integrating technologies related to power network operation, communication, or information technologies
for improving the electrical power generation, transmission, distribution, or usage, i.e., smart grids. The
detailed description of CPC can be found at https://www.uspto.gov/web/patents/classification/cpc/
html/cpc-Y.html#Y02.

53The categories included are: 6A (Treatment, disposal, combustion and recycling of waste; cleaning of
air and water pollution), 6B (Energy conservation and energy efficiency), 6C (Biofuels), 6D (Fuel cells and
hydrogen technology), 6E (Solar Energy), 6F (Hydro Energy), 6G (Waste energy, energy from waste heat,
fuel from waste), 6H (Wind Energy), 6I (Geothermal energy, and energy from natural heat), 6Z (Environment
excluded in 6A), ZB (Automobiles), and ZC (Other transport technologies). The detailed description of these
categories can be found at https://www.dropbox.com/scl/fi/bek06qgq6eqgy26wbzl1f/Copy-of-green.
xlsx?dl=0&rlkey=xah83onydyg7ywrri0uabb6yx.
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5.3 The role of interactions of physical and transition risks

While there is evidence of the individual effect of each type of risk on credit outcomes, how
does the outcome respond to the interaction of the two risks? The idea is that physical and
transition risks are often interrelated, interacting in complex ways (ECB, 2021b). There-
fore, the observed negative effect of climate risks on credit allocation may be amplified or
mitigated, depending on how the risks interact. For example, rising physical risks, such as
those associated with extreme weather events, can trigger more stringent policies, thereby
increasing transition risks.54

Given physical risks are mostly location-dependent, while transition risks are industry
or firm-specific, firms may face varying degrees of exposure depending on their geographic
location or industry. To visually show the interaction of the high (low) physical risks and
transition risks exposure, I plotted them into a 2×2 matrix, as presented in Figure D.12.

To empirically investigate how banks respond to the interaction of the high (low) physical
risks and transition risks exposure and reallocate credit among different groups, I estimate
the following specifications:55

Lendingibt =β1Low PRit−1 × Low TRit−1 + β2High PRit−1 × Low TRit−1 + β3Low PRit−1

× High TRit−1 + β4High PRit−1 × High TRit−1 +X ′
it−1γ1 + Z ′

bt−1γ2 + FEs+ ϵibt

for firm i, bank b, year t, and parish p.
The main variables of interest are the four interaction dummies that capture the interac-

tion of high (low) physical and transition risks, as defined in Section 5.1.3, with interaction
effects represented by the coefficients β1 through β4. According to Table 6, the positive es-
timated coefficients for β1, specifically for the interaction term Low PRit− 1×Low TRit− 1,
across columns 1 to 4, suggest a slight positive credit reallocation towards firms with ex-
tremely low interacted (compounded risks). For firms with high interaction risks, I observe
a negative impact on credit growth and the initiation of new loans, although these findings
are not statistically significant. This indicates a modest response from banks, which appear
to slightly favor firms with lower interacted risks while not significantly altering their credit

54Another example highlighting the importance of analyzing interacted (compounded) risks is that banks’
climate-related scenario analyses have increasingly integrated both physical and transition risks. For in-
stance, the Network for Greening the Financial System (NGFS) has developed four widely adopted scenarios
featuring varying levels of physical and transition risks, including 1) low physical and low transition risks
(orderly scenario); 2) low physical and high transition risks (disorderly scenario); 3) high physical and low
transition risks (hothouse world scenario); and 4) high physical and high transition risks (too little, too late
scenario).

55I use the extreme risk dummy, instead of the continuous climate risk measure for the interaction analysis
as the interaction of two continuous values is harder to intercept.
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policies towards high-risk firms.

5.4 Heterogeneity analysis

In this section, the paper proceeds with the heterogeneity analysis and asks what factors
on the borrower and bank sides might amplify the effect of physical and transition risks on
lending patterns. Identifying these would also help to understand how different character-
istics influence the sensitivity of the negative effects and shed light on some microeconomic
mechanisms that could plausibly be behind the observed reallocation of credit, as I outlined
in Section 2.2.

5.4.1 Borrower-level factors

Firm size As smaller firms are more informational opaqued, risky, and more likely to be
constrained (Hadlock and Pierce, 2010), it is natural to hypothesize that small-sized firms
may be more negatively affected when banks decide on the direction of relocating credit. To
test this hypothesis empirically, I first categorize small and large firms based on their size
distribution, then estimate a modified version of Equation (2), which includes an interaction
with size dummy and climate risks variables.56 As shown in columns 2 and 4 in Table 8, the
empirical results support the idea that small firms appear to be more negatively affected by
the effects of transition risks in terms of getting access to new loans, whereas large firms are
positively impacted.

Financial leverage Firms with high leverage will likely face more significant financial
constraints and risk profiles, which can then influence bank lending decisions (Jiménez et al.,
2014; Laeven and Popov, 2023). In light of this, I examine the role of financial leverage in
the observed reallocation of credit in response to heightened climate physical and transition
risks. The findings are shown in Columns 1 and 2 of Table 9, where I augment the model
from Equation (2) by adding an interaction term that combines a high financial leverage
dummy (defined as one if the leverage ratio is above the median) with the key variables of
interest. The significant negative coefficient for the interaction in column 2 indicates that
highly leveraged firms are less likely to receive new loans when exposed to climate risks.
This could be because banks are concerned about those firms’ lack of financial cushion and
lower financial flexibility to absorb adverse shocks related to climate disasters or policy.

56Given the skewed distribution of firm size in the sample, I define a large firm as a dummy variable equal
to 1 if the firm’s size falls within the top 25th percentile of the sample distribution, while a small firm is
defined as 1 that falls within the bottom 25th percentile of the distribution.
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Put together, the above evidence suggests that risky and constrained firms, such as smal-
ler, more leveraged firms are more negatively affected. This is consistent with the notion
that banks tend to avoid compounding different types of risks (Dunz et al., 2023).

Capital intensity and industry brownness I proceed by exploring other factors on the
firm side that may play an important role: capital intensity and industry brownness, albeit
the link is theoretically ambiguous.

First, capital intensity may play a role in affecting the observed bank lending decision. On
the one hand, those firms with high capital intensity have substantial investments in physical
assets, which may be directly affected by climate-related physical risks (e.g., damage from
extreme weather and flooding). On the other hand, firms with high capital intensity may
have more assets that can serve as collateral, potentially providing a buffer against risks.
Therefore, it is not clear ex-ante about the role of capital intensity. To test this, I include
an interaction term that combines a dummy variable for high capital intensity, which is 1 if
the share of fixed assets as a fraction of total assets is above the median (50th percentile),
with the physical and transition risks variables. The significant negative coefficients on the
interaction terms between high capital intensity dummy and physical risks, as presented in
columns 3 and 4 of Table 9, suggest that banks are likely to reduce lending growth and less
likely to initiate new loans to those high capital-intensive firms exposed to high physical
risks. The evidence is consistent with the notion that banks are more concerned about the
direct exposure of tangible assets, i.e., machines and factories, to physical risks. However, the
interaction term between transition risks and capital intensity shows different signs on the
extensive and intensive margins, perhaps due to the different roles capital plays in response
to climate risks.

Second, I explore the role of industry brownness. The question of how banks lend to firms
within the brownest industry with extremely high scope 1 emissions (e.g., Coke & Refined
Petroleum Products) is not clear ex-ante. On the one hand, banks might be more cautious
in lending because those firms in the brownest industry are most exposed to transition risks.
On the other hand, given that the brownest industry tends to give higher short-term returns,
banks may continue to finance firms in brown industries to retain profits.57 To empirically
test for this, I first identify those brown industries if the industry energy intensity, calculated

57For example, Fossil fuel finance reports stated the world’s 60 largest banks have financed $4.6 trillion
in fossil fuel since 2015, with $742 billion in 2021 alone (Alliance et al., 2022). Additionally, those brownest
industries. such as power generation, oil refining, and steel manufacturing—are typically participants in the
EU ETS. This involvement may be viewed as a positive signal by banks that these industries are actively
engaging in regulated carbon emissions management.
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as the total GHG emission divided by industry value added (GHG emissionsj,t
Value addedj,t

) is above the 95th
percentile of the entire sample distribution over time. Those are, therefore, the brownest
industries that contribute to high scope 1 emissions in the sample, including the manufacture
of coke and refined petroleum products, air transport, and the manufacture of other non-
metallic mineral products. In the next step, I refine Equation (2) with an interaction term
between climate risks variables and brown industry dummy, as shown in the estimation
results reported in Table 10. The estimated coefficient of -5.683 and -6.072 for interaction
terms in column 1 suggests that for firms in the brownest industries, the negative impacts
of physical risks and transition risks on loan growth (the intensive margin), is even larger,
reducing loan growth by an additional 5-6%. However, when it comes to the extensive
margin, there is a mixed pattern for the effects of physical and transition risks.

Overall, the empirical results suggest mixed evidence for the role of capital intensity and
industry brownness in the observed credit allocation outcomes, consistent with the previous
theoretical hypothesis.

5.4.2 Bank-level factors

Next, I explore the different roles that bank-level factors may play in the observed relation-
ship between firms’ exposure to climate risks and credit allocations.

Lending familiarity Given the firm bank fixed effects play an important role in the
estimation of baseline results, i.e., the effects of physical risks on the extensive margin of
lending drop and become insignificant (see Table 3), this further raises the question of how
the relationships between banks and borrowers may influence the banks’ decisions. My
hypothesis is that banks are more likely to adjust lending to existing clients, compared with
the first-time lender for two reasons. First, banks have an information advantage when
dealing with borrowers who have obtained loans in the past, particularly in the context of
SMEs (Petersen and Rajan, 1994; Diamond, 1991; Sharpe, 1990; Rajan, 1992). They can
therefore more efficiently acquire climate-related information from these repeat borrowers.
Second, given Danish bank-firm relationships tend to be quite “sticky” (Hviid et al., 2022),
banks are in a better position to adjust lending to repeat borrowers, knowing that it may be
difficult for firms to shift lenders.58 However, when it comes to first-time lending, they might
lift their credit restrictions and give more new loans to build relations with new borrowers,
regardless of their climate risks exposure.

In Table 11, I take the question to the data and augment Equation (2) with an interaction
term between climate risks variables and a bank-borrower measure of lending relationships or

58The average firm maintains connections with only about two banks.
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familiarity. Specifically, “Repeat Lending” is a 0/1 dummy variable indicating whether the
same bank has previously allocated loans from the same firm, while “First Time Lending”
is a dummy variable equal to 1 if a given bank has never initiated loans to a given firm in
the past. The point estimates on the interaction between repeat lending and climate risks
are mostly negative and significant (columns 1 and 2), while the interaction between first-
time lending and climate risks are largely positive and significant (columns 3 and 4). The
interpretation is that banks tend to adjust lending to existing clients with high exposure to
climate risks while not necessarily lending to new customers. This confirms the hypothesis
and supports the theoretical notion that relationship lending plays an important role in the
observed reallocation of credit in response to climate risks. It also echoes the idea that sticky
banking relationships can be costly to borrowers who switch lenders (Chodorow-Reich, 2014).

Banks’ exposure to climate risks Given banks’ exposure to climate risks primarily
arises indirectly through their loan portfolios (Faiella and Natoli, 2019), I then proceed by
examining banks’ own exposure to climate risks, calculated based on their loan portfolio and
their client firms’ exposure to physical and transition risks. My hypothesis is that banks with
higher exposure to climate risks may be more aware of these risks and, thus, more proactive
in incorporating them into their credit allocation.

To test this channel, I construct an empirical proxy for the banks’ exposure to climate
risks. In particular, I calculate, for each bank year, the loans-weighted average of physical
risks (transition risks) of their client firms. Specifically, banks’ exposure to physical risks
Banks’ physicalbt for bank b at time t are defined as:

Banks’ physicalbt =
∑

i∈I Loansibt × Physical riskspt∑
i∈I Loansibt

where Loansibt is the total loan balance bank bank b extend to firm i at time t. The
numerator is the sum of the loan amounts weighted by the physical risks exposures of client
firms. Specifically, for each bank b, I first multiply the amount of loans Loansibt with the
physical risks exposure Physical riskspt of for the given firm i located at parish p. Then,
I summarize the amount for all the firm i if it belongs to bank b’s clients base I. The
denominator is the total loan balance provided by each bank b at time t. Essentially, the
banks’ physical risks exposure is the weighted average of the physical risks indicator from
their client firms, with weights being the proportion of each loan relative to the total loans.

Similarly, banks’ exposures to transition risks are defined as:

Banks’ transitionbt =

∑
i∈I Loansibt × Transition risksi,t∑

i∈I Loansibt
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I then define high exposure banks to be those for which Banks’ physicalbt or
Banks’ transitionbt are above the 75th percentile. Those are the banks that are extremely
exposed to physical or transition risks. “High Exposure Bank” is a dummy variable equal to
1 if a bank falls into the category. I then interact this variable with physical and transition
risks and augment Equation (2) with this interaction, as reported in column 1-2 of Table 12.
The evidence confirms that those high-exposure banks are more cautious in lending to those
high-exposure firms, as indicated by the negative coefficients of the interaction terms.

Banks’ specialization in brown industry Another prominent bank-level factor that
might play a role is bank specialization (Paravisini et al., 2023), albeit the relations are
ambiguous. On the one hand, banks that have already built experience or expertise in
lending to brown industries may have a higher incentive to continue this trend to obtain
higher short-term profit margins (Laeven and Popov, 2023).59 In addition, banks with high
exposure to a particular industry are more informed and have lower information acquisition
costs (Sharma, 2024; Giometti and Pietrosanti, 2022), as they have more interaction with
the borrowers and have an information advantage. As a result, specialized banks are better
positioned to manage those risks, such as in the event of sudden implementation of carbon
taxes. On the other hand, as those banks are likely to face higher regulatory, reputation, or
financial risks associated with climate risks, they might be more proactive in managing the
risks and, therefore, more cautious in lending, as discussed in Section 5.4.2.

Following banks’ specialization measure in the spirit of Paravisini et al. (2023), I construct
an empirical proxy Shareb,t,j as the share of total lending bank b in a given year t extended
to 2-digit industry j, calculated as the ratio of total loans by bank b extended in year t

to industry j (Loanb,t,j) to total lending by bank b in year t to all industries (Loanb,t).
Specifically, the share of total lending to industry j by bank b in year t is given by:

Shareb,t,j =
Loanb,t,j

Loanb,t

A bank is considered to be specialized in an industry j in year t if the share falls in
the 75th percentile of the sample distribution for that industry j, i.e., Sb,t,j ≥ P75(Sj). I
then identify those banks specialized in brown industries if the specialized industry j falls in
brown industry.60

To empirically test this channel, I interact a dummy “Brown Industry Specialization”,
59For instance, Degryse et al. (2020) show banks with legacy positions of brown firms continue to lend to

brown firms and create a barrier in credit supply to newer, greener firms.
60This is defined if the industry emission intensity, calculated as the total GHG emission divided by value

added (GHGj,t

V Aj,t
) is above the 95th percentile of the entire sample distribution, as explained in Section 5.4.1.
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which is a dummy equal to 1 if banks specialized in brown industry, with climate risks
variables, as reported in columns 3 and 4 of Table 12. The evidence is consistent with the
idea that banks specializing in brown industries are prone to continue to initiate new loans,
as indicated by the significantly positive coefficients of the interaction terms in column 4. In
other words, banks with specialization in brown industries are more likely to increase lending
to those exposed firms, perhaps due to lower information acquisition costs and long-term
established ties, consistent with the findings of Laeven and Popov (2023) and Degryse et al.
(2020).

5.5 Mechanisms

Since the observed credit outcomes represent the equilibrium between bank lending and
firm borrowing, I explore whether the supply-side (banks) or demand-side (firms) effects
play a more important role and examine the motivations behind the driver. As suggested in
Section 2.2, on the demand side, firms facing high climate risks might request less credit from
banks. Prior studies, such as those by Huang et al. (2018); Kacperczyk and Peydró (2022);
Bolton et al. (2019), have shown that firms often have slower growth, deleverage, and initiate
divestment in response to uncertainties and external shocks, resulting in reduced credit
demand (H3A). On the supply side, banks may choose to allocate less credit to firms with
high climate risks due to the increased perceived risk of default (H3B). While I acknowledge
the inherent challenge of separating supply-side effects from demand-side factors in a clean
way, as discussed in the empirical banking literature (Khwaja and Mian, 2008; Jiménez et al.,
2020; Degryse et al., 2019). Nevertheless, leveraging rich firm-level data, I empirically test
H3A and H3B to examine both the demand and supply sides, in order to have an idea of
which side is more important.

5.5.1 Climate risks and credit demand

To empirically test for H3A that lower firm growth can drive the observed negative effects, I
begin by examining whether climate risks variables are linked to a range of firm-level indic-
ators that reflect firm growth and credit demand, as detailed in Equation (7). Specifically,
I use investment growth and employment growth as proxies for credit demand from firm
expansion. Additionally, I consider fixed asset growth as an indicator of funding needs for
capital expenditure and sales growth as a measure of credit demand for working capital.
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Firm Growthit =β1Physical riskspt−1 + β2Transition risksit−1 +X ′
it−1γ1 + αi + αp + αjt + ϵit

(7)

A significant negative coefficient would suggest that higher climate risks are associated
with lower firm growth and thus reduced credit demand, implying that credit demand factors
could be driving the observed results. However, my analysis does not find evidence support-
ing this channel stated in H3A, because the coefficients presented in columns 1 through 4
indicate that climate risks are not positively correlated with any of the firm-level proxies
for credit demand. This lack of correlation further suggests that other factors, possibly re-
lated to supply-side constraints and banks’ risk perceptions, may be more influential in the
observed credit reallocation in the context of climate risks.

An alternative way to test for H3A is to examine the effects of climate risks on lending
outcomes for a subset of firms that exhibit positive credit demand, inspired by Takahashi
and Shino (2023). The rationale behind this approach is that if the negative effects of climate
risks on loan growth remain even among firms with high credit demand, it would suggest that
the demand effect is not the primary driver. To do so, I re-estimate the baseline regression
from Equation (5) using a different sample of firms that are likely to have positive credit
demand. The estimation results are presented in Table 14. In columns 1-4, I focus on firms
with positive investment growth and employment growth, using these metrics as proxies for
growing firms. Columns 5-6 include firms with positive fixed asset growth as an indicator of
funding needs for capital expenditure, while columns 7-8 use a sample of firms with positive
sales growth to measure the demand for working capital.61 The evidence that negative effects
persist among firms with positive credit demand rejects H3A and suggests that these effects
may be attributed to the supply side, rather than a lack of demand.

5.5.2 Climate risks and credit supply

To support the credit supply side explanation, I apply a method developed by Degryse
et al. (2019), where I include high dimensional ILST fixed effects to better proxy for local
credit demand variations.62 They argue that by grouping firms of similar size, operating
within the same industry and geographic location in the same year, it is possible to reduce

61I acknowledge that a strong credit supply can also stimulate firm growth and, in turn, generate greater
credit demand. Nevertheless, these proxies, such as sales growth, originate from the firm’s internal activities
and reflect a firm’s inherent demand for resources and can, therefore, serve as indicators of credit demand.

62While the most saturated model in my baseline analysis includes fixed effects such as industry-year and
bank-firm to control for the credit demand, there are concerns they may not fully capture the credit demand.
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the variability in credit demand that is not related to supply-side factors, as those granular
groups of firms are likely to exhibit comparable credit demands within a given year. I present
the results in Table 15, where I gradually saturate the model with Industry-Location-Size
Fixed Effects (ILS) in column 1, Industry-Location-year fixed effects (ILT) in column 2,
and Industry-Location-Size-year fixed effects (ILST) in column 3. The evidence indicates a
robust negative relationship between transition risks and loan growth, which further supports
the supply-side explanations.63

Credit risk channel So far, my empirical evidence suggests that a shift in credit supply
is likely to play a more important role in the observed outcomes. A follow-up question is:
what is driving banks’ motivation? One hypothesis is banks may be concerned about the
perceived increasing credit risk associated with climate risks, as stated in H3B.

To empirically examine H3B whether exposure to climate risks is associated with in-
creased credit risk, I run a firm-level regression to test the correlation between climate risks
and three proxies for high credit risks: firms’ likelihood of exiting the sample, negative EBIT,
and financial distress. The estimation results are presented in Table 16. Specifically, the exit
variable is a binary indicator that equals one if a firm exits the sample, thereby providing an
upper bound estimate of the default rate.64 Second, negative EBIT is a dummy if a firm’s
EBIT is negative, an indicator of low profit and high credit risk, as shown in column 2.
Finally, financial distress is a dummy equal to 1 if a firm has a low interest coverage ratio
(ICR), shown in column 3.65 The positive coefficients for transition risks in both columns
2 and 3 provide suggestive evidence firms exposed to higher transition risks are more likely
to experience negative EBIT and high financial stress, which are perceived as having higher
credit risk and are relevant in a bank’s conventional credit risk assessment matrix.

Overall, my evidence rejects H3A and supports H3B, suggesting that banks’ credit supply
may play a more important role in the reduction of credit allocation, and this is due to the
financial consideration that those firms exposed to high climate risks are likely to experience
higher credit risk.66

63One caveat of using too many fixed effects is that it may also absorb significant variations of interest, so
the result is likely to be a lower bound of my estimates.

64To visually see the time trend, Figure D.14 in the appendix details the number of firms that left the
sample. Notably, there is a surge of firms exiting during the global financial crisis of 2007-2009.

65The ICR, calculated as EBIT divided by interest expenses, measures a firm’s ability to pay back interest.
A lower ICR indicates higher credit risk and financial stress.

66While banks may also have other non-financial incentives such as a taste for green firms, I do not test
this channel here as this requires other data sources such as surveys.
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6 Conclusion and Discussion
Existing empirical research on banking has shown evidence that large global banks are be-
ginning to respond to physical and transition risks, typically through syndicated loans to
large publicly listed firms (Kacperczyk and Peydró, 2022; Degryse et al., 2023; Meisenzahl,
2023). However, there is limited understanding of how banks adjust their credit allocation
to non-listed firms which are usually small and medium-sized enterprises (SMEs). Further-
more, existing studies often consider the impacts of physical and transition risks separately,
despite their interconnected nature and potential for compounding effects.

This study adds to the empirical sustainable banking by providing evidence on how
climate risks affect bank credit allocation, using comprehensive firm-bank matched data
from Denmark, that are representative of all types of firms. The empirical evidence suggests
that firms exposed to high physical risks and transition risks receive lower credit growth,
which echoes the evidence found in the syndicated loan markets. In addition, more credit is
allocated to these risky but “greening” firms and firms with low interacted risks.

This paper further documents a large heterogeneity of observed credit allocation within
different groups of borrowers and banks. On the borrower side, more constrained firms
(small firms and highly leveraged firms) are more negatively affected. On the bank side, the
observed reductions are stronger for banks with repeat lending relationships with high-risk
exposure, while banks specializing in the brown industry continue to increase their lending.
Furthermore, I empirically test the relations between climate risks and firm-level outcomes
to shed light on the channels. The evidence suggests that the credit supply side is likely to
play a bigger role in the observed effect, as firms facing higher climate risks are observed to
experience higher credit risk.

This paper responds to the concerns from policymakers about the potential financial
stability risks posed by climate change (ECB, 2021b; Fed, 2021) and has several policy
implications. First, I provide positive evidence that banks are responding to rising climate
risks in credit allocation. This is particularly interesting for banking supervision authorities
and central banks. Given the modest magnitude of the effects, future policies should develop
clear guidelines for banks to assess and manage both physical risks and transition risks
comprehensively, and provide training to better integrate these risks into credit assessments.
Second, given that the results suggest more constrained firms are more negatively affected
in accessing credit, there may be a need for targeted policies to help those smaller and
more marginalized firms in the green transition. For example, providing them with targeted
financial assistance, access to external financing, insurance schemes, and subsidies. Third,
future policies could be introduced to further encourage banks to support firms engaging in
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“greening” efforts and consider the potential interaction of two types of climate risks.
The results also have implications for firms and banks. From the firms’ perspective, I

document that exposure to high climate risks may incur additional costs through the bank
financing channel. Small and highly leveraged firms are particularly vulnerable to these
credit constraints. In addition, given that “greening” firms have easier access to finance,
firms might have more incentives to engage in green transition to ensure easier access to
credit. For banks, given the modest effect of climate risks on credit allocation and the large
heterogeneity among banks, they need to enhance their climate risks management practices
and accelerate the shift toward more sustainable lending.

Finally, I highlight a few crucial caveats in light of all these results. First, while the
empirical results provide evidence that high-risk exposure firms receive lower credit growth,
it is important to emphasize the magnitude of this effect is relatively modest. However, given
the anticipated heightened climate-related risks and banks’ internalizing climate risks under
their rational expectations, a stronger effect may be observed in the future. Second, this
study does not directly evaluate the real effect of the credit reallocation on actual emission
reductions (Hartzmark and Sussman, 2019; Apicella and Fabiani, 2023), emission pledges
(Gormsen et al., 2024) or green innovations (Accetturo et al., 2022). However, our work may
open doors for future research on banks’ real impact on green transition. Lastly, despite my
efforts to test the relative importance of the supply and demand factors, I acknowledge the
inherent challenges and advocate future research to leverage possible shocks or credible IV
to further disentangle credit supply and demand in the context of rising climate risks.
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7 Tables

Table 2: Climate Risks and Loan Growth (Intensive Margin)

Loan Growth
(1) (2) (3) (4) (5) (6)

Physical Risks -1.368*** -1.483*** -1.274*** -1.276*** -1.283*** -1.143**
(0.489) (0.490) (0.491) (0.491) (0.489) (0.540)

Transition Risks -2.208*** -2.203*** -2.100*** -2.146*** -1.783*** -1.632***
(0.598) (0.574) (0.547) (0.562) (0.441) (0.427)

Firm Fixed Effects Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Parish Fixed Effects Yes Yes Yes Yes
2-digit Industry Fixed Effects Yes
2-digit Industry-Time Fixed Effects Yes Yes
Bank-Time Fixed Effects Yes Yes
Bank-Firm Fixed Effects Yes
Firm Variables Yes Yes Yes Yes Yes
Bank Variables Yes Yes Yes
R-sq 0.086 0.087 0.097 0.097 0.123 0.190
N 189,200 189,142 187,764 187,760 187,700 179,374

Notes: The table presents the estimation results for the effects of physical and transition risks on loan
growth from OLS regressions estimated from Equation (1) to Equation (6). The dependent variable is the
loan growth in percentage points of firm i received from bank b in a given year t, conditional on firm bank
relations being present in both prior and current year, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%.

The main independent variables are physical risks indicators and transition risk indicators. All RHS
variables are lagged by one year. All regressions include fixed effects as specified. The sample starts in
2003 and ends in 20l9. The detailed firm-level and bank-level control variable definitions are described
in Table 1. Robust standard errors clustered at the firm level are reported in parentheses in all columns.
Significance levels: ***1%, **5%, *10%.
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Table 3: Climate Risks and New Loans (Extensive Margin)

New Loans
(1) (2) (3) (4) (5) (6)

Physical Risks -0.005** -0.005** -0.004** -0.004** -0.004* -0.003
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Transition Risks -0.001 -0.001 -0.001 -0.001 -0.002 -0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Firm Fixed Effects Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Parish Fixed Effects Yes Yes Yes Yes
2-digit Industry Fixed Effects Yes
2-digit Industry-Time Fixed Effects Yes Yes
Bank-Time Fixed Effects Yes Yes
Bank-Firm Fixed Effects Yes
Firm Variables Yes Yes Yes Yes Yes
Bank Variables Yes Yes Yes

R-sq 0.139 0.140 0.148 0.148 0.171 0.265
N 220,963 220,890 219,228 219,225 219,167 209,659

Notes: The table presents the estimation results for the effects of physical and transition risks on new
loan initiation from OLS regressions (linear probability model) based on Equation (1) to Equation (6).
The dependent variable is a new loans indicator, which is a 0/1 dummy variable indicating whether a
given firm i received new loans from a given bank b in a given year. It is calculated as 1 when the loan
growth rate is positive, implying whether a firm gets any new credit at all, as opposed to how much credit
it gets. The main independent variables are physical risk indicators and transition risk indicators. All
RHS variables are lagged by one year. All regressions include fixed effects as specified. The sample starts
in 2003 and ends in 20l9. The detailed firm-level and bank-level control variable definitions are described
in Table 1. Robust standard errors clustered at the firm level are reported in parentheses in all columns.
Significance levels: ***1%, **5%, *10%.
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Table 4: Climate Risks and Bank Lending: Relationship Changes and Interest Rate

Enter Exit Interest Rate
(1) (2) (3)

Physical Risks 0.000 0.003** 0.003
(0.001) (0.001) (0.018)

Transition Risks -0.001*** 0.000 0.008
0.000 (0.001) (0.012)

Firm Fixed Effects Yes Yes Yes
Parish Fixed Effects Yes Yes Yes
2-digit Industry-Time Fixed Effects Yes Yes Yes
Bank-Time Fixed Effects Yes Yes Yes
Firm Variables Yes Yes Yes

R-sq 0.377 0.368 0.437
N 305,194 305,194 188,147

Notes: The table presents the estimation results for the effects of physical and transition risks on rela-
tionship changes and interest rate from OLS regressions. We comprehensively incorporate fixed effects
into the model, including firm, parish, industry-time, and bank-time fixed effects, as presented in Equa-
tion (5). In column 1, the dependent variable is a dummy variable “enter” set to 1 if a firm and bank
establish a relationship for the first time. In column 2, “exit” is a dummy variable set to 1 if a previously
existing firm-bank relationship discontinues. The dependent variable in column 3 is the effective interest
rate, calculated as Interest paymentibt

0.5×(Loansibt+Loansib,t−1)
× 100%, which measures the average rate a firm pays on its

outstanding loans over a given period. The main independent variables are physical risk indicators and
transition risk indicators. All regressions include fixed effects as specified. The sample starts in 2003 and
ends in 20l9. The detailed firm-level and bank-level control variable definitions are described in Table 1.
Robust standard errors clustered at the firm level are reported in parentheses in all columns. Significance
levels: ***1%, **5%, *10%.
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Table 5: Climate Risks and Lending: Response to the Tail Risks

Loan Growth New Loans
(1) (2) (3) (4)

High PR -1.401* -1.583* -0.005 -0.005
(0.846) (0.855) (0.003) (0.003)

High TR -3.094*** -2.713*** -0.007* -0.008**
(0.994) (1.018) (0.004) (0.004)

Low PR 2.210*** 1.860** 0.009*** 0.008**
(0.773) (0.785) (0.003) (0.003)

Low TR 0.057 0.106 -0.001 0.001
(1.162) (1.218) (0.004) (0.004)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes
Bank Fixed Effects Yes Yes
Parish Fixed Effects Yes Yes
2-digit Industry Fixed Effects
2-digit Industry-Time Fixed Effects Yes Yes
Bank-Time Fixed Effects Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes

R-sq 0.087 0.123 0.140 0.171
N 189,142 187,700 220,890 219,167

Notes: The table presents the estimation results for banks’ lending response to the tail physical and
transition risks from OLS regressions, with extreme risks defined based on a moving distribution. In
columns 1-2, the dependent variable is the loan growth in percentage points of firm i received from bank
b in a given year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%. The dependent variable in columns

3-4 is a 0/1 dummy variable indicating whether a given firm received new loans from a given bank b in
a given year. High PR and Low TR are set to 1 if the respective risk indicator for physical or transition
risks falls into the top 25th percentile of the distribution in a given year. Low PR and Low TR are
then defined as one if the risk falls into the bottom 25th percentile of the distribution in a given year.
The main independent variables are the four dummies, indicating the extremely high and low physical
and transition risks. All RHS variables are lagged by one year. All regressions include fixed effects and
control variables as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and
bank-level control variable definitions are described in Table 1. Robust standard errors clustered at the
firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table 6: Climate Risks and Lending: Interactions of Physical and Transition Risks

Loan Growth New Loans
(1) (2) (3) (4)

Low PR x Low TR 2.749* 2.741* 0.009* 0.009*
(1.460) (1.475) (0.005) (0.006)

High PR x Low TR -2.133 -1.717 -0.003 0.000
(1.599) (1.635) (0.006) (0.006)

Low PR x High TR 1.713 1.369 0.009* 0.006
(1.356) (1.356) (0.005) (0.006)

High PR x High TR -1.844 -1.464 -0.007 -0.006
(1.413) (1.412) (0.006) (0.006)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes
Bank Fixed Effects Yes Yes
Parish Fixed Effects Yes Yes
2-digit Industry Fixed Effects
2-digit Industry-Time Fixed Effects Yes Yes
Bank-Time Fixed Effects Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes

R-sq 0.087 0.123 0.140 0.171
N 189,142 187,700 220,890 219,167

Notes: The table presents the estimation results for banks’ lending response to high (low) physical
risks and transition risks exposure from OLS regressions, with extreme risks defined based on a moving
distribution over time. In columns 1-2, the dependent variable is the loan growth in percentage points
of firm i received from bank b in a given year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%. The

dependent variable in columns 3-4 is a 0/1 dummy variable indicating whether a given firm received new
loans from a given bank b in a given year. High PR and Low TR are set to 1 if the respective risk
indicator for physical or transition risks falls into the top 25th percentile of the distribution in a given
year. Low PR and Low TR are then defined as one if the risk falls into the bottom 25th percentile of
the distribution in a given year. The main independent variables are the four dummies, indicating the
extremely high and low physical and transition risks. All RHS variables are lagged by one year. All
regressions include fixed effects and control variables as specified. The sample starts in 2003 and ends in
20l9. The detailed firm-level and bank-level control variable definitions are described in Table 1. Robust
standard errors clustered at the firm level are reported in parentheses in all columns. Significance levels:
***1%, **5%, *10%.
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Table 7: Lending to Risky and “Greening” Firms

Loan Growth New Loans Loan Growth New Loans
(1) (2) (3) (4)

Physical Risks -2.029*** -0.007*** -1.490*** -0.005**
(0.591) (0.002) (0.490) (0.002)

Transition Risks -3.089*** -0.007** -2.203*** -0.001
(0.810) (0.003) (0.574) (0.001)

Reduction energy intensity x Physical Risks 1.116* 0.005**
(0.657) (0.002)

Reduction energy intensity x Transition Risks 1.126 0.006*
(0.929) (0.003)

Green patent application x Physical Risks 12.125 0.045*
(9.000) (0.027)

Green patent application x Transition Risks -7.899 -0.057
(10.663) (0.090)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes
R-sq 0.087 0.140 0.087 0.140
N 189,142 220,890 189,142 220,890

Notes: The table presents the estimation results for banks’ lending to risky and “greening” firms. The
estimation is based on versions of Equation (2), where we include an interaction of physical and transition
risks with a proxy for “greening” firms. In columns 1-2, the dependent variable is the loan growth in
percentage points of firm i received from bank b in a given year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
×

100%. The dependent variable in columns 3-4 is a 0/1 dummy variable indicating whether a given firm
received new loans from a given bank b in a given year. Reduction energy intensity is a dummy variable
equal to one if a firm reduces its energy intensity compared with the previous year. Green patent
application is defined as one if a firm applies for green patents. All regressions include fixed effects and
control variables as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and
bank-level control variable definitions are described in Table 1. Robust standard errors clustered at the
firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table 8: Climate Risks and Lending: Firm Size Heterogeneity

Loan Growth New Loans Loan Growth New Loans
(1) (2) (3) (4)

Physical Risks -0.532 -0.005 -1.770*** -0.005**
(0.841) (0.003) (0.526) (0.002)

Transition Risks -3.471** 0.000 -2.031*** -0.007***
(1.620) (0.000) (0.564) (0.001)

Small Firm x Physical Risks -1.237 0.000
(0.872) (0.003)

Small Firm x Transition Risks 1.460 -0.007***
(1.703) (0.001)

Large Firm x Physical Risks 1.224 0.000
(0.868) (0.003)

Large Firm x Transition Risks -1.313 0.006***
(1.671) (0.001)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes

R-sq 0.087 0.140 0.087 0.140
N 189,142 220,890 189,142 220,890

Notes: The table presents the estimation results for the firm size heterogeneity on banks’ lending response
to climate risks. In column 1 and 3 the dependent variable is the loan growth in percentage points of firm
i received from bank b in a given year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%, for the intensive

margin. The dependent variable in column 2 and 4 is a 0/1 dummy variable indicating whether a given
firm received new loans from a given bank b in a given year for the extensive margin. Large firm is a
dummy variable that equals to 1 if firm size is in the top 25th percentile of the sample distribution; Small
firm is defined as those falls into the bottom 25th percentile of the sample distribution; All regressions
include fixed effects and control variables as specified. The sample starts in 2003 and ends in 20l9. The
detailed firm-level and bank-level control variable definitions are described in Table 1. Robust standard
errors clustered at the firm level are reported in parentheses in all columns. Significance levels: ***1%,
**5%, *10%.
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Table 9: Climate Risks and Lending: Financial Leverage and Capital Intensity

Loan Growth New Loans Loan Growth New Loans
(1) (2) (3) (4)

Physical Risks -0.944 -0.001 -0.393 0.000
(0.639) (0.002) (0.598) (0.002)

Transition Risks -2.306** -0.001 -1.541*** -0.006***
(0.930) (0.001) (0.525) (0.002)

High Leverage x Physical Risks -1.101 -0.007***
(0.695) (0.003)

High Leverage x Transition Risks 0.212 -0.005**
(1.130) (0.002)

High Capital Intensity x Physical Risks -2.138*** -0.010***
(0.696) (0.003)

High Capital Intensity x Transition Risks -1.540* 0.005***
(0.798) (0.002)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes

R-sq 0.087 0.140 0.087 0.140
N 188,934 220,615 188,934 220,615

Notes: The table presents the estimation results for the sensitivity of financial leverage and capital
intensity heterogeneity on banks’ lending response to climate risks. In column 1 and 3, the dependent
variable is the loan growth in percentage points of firm i received from bank b in a given year t, calculated
as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%, for the intensive margin. The dependent variable in column 2 and

4 is a 0/1 dummy variable indicating whether a given firm received new loans from a given bank b in
a given year for the extensive margin. High financial leveraged firms are defined if the leverage ratio is
above the 50th percentile, while high capital intensity is defined if the share of fixed assets as a fraction
of total assets is above the 50th percentile. All regressions include fixed effects and control variables as
specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level control
variable definitions are described in Table 1. Robust standard errors clustered at the firm level are
reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table 10: Climate Risks and Lending: Firms within the Brownest Industry

Loan Growth New Loans
(1) (2)

Physical Risks -1.453*** -0.005**
(0.491) (0.002)

Transition Risks -2.015*** -0.007***
(0.534) (0.001)

Brown Industry x Physical Risks -5.683* -0.049**
(3.374) (0.021)

Brown Industry x Transition Risks -6.072*** 0.007***
(2.068) (0.001)

Firm Fixed Effects Yes Yes
Time Fixed Effects Yes Yes
Bank Fixed Effects Yes Yes
Firm Variables Yes Yes
Bank Variables Yes Yes
R-sq 0.087 0.140
N 189,066 220,805

Notes: The table presents the estimation results for banks’ lending to firms within the brown industry.
The estimation is based on versions of Equation (2), where we include an interaction of physical and
transition risks with a proxy for firms in the brown industry. The brown industry is a dummy equal to
1 if a firm belongs to an industry where the industry emission intensity, calculated as the total GHG
emission divided by industry value added (GHGj,t

V Aj,t
) is above the 95th percentile of the entire sample

distribution over time. Those are, therefore, the brownest industries that contribute to high scope 1
emissions in our sample, including the manufacture of coke and refined petroleum products, air transport,
and the manufacture of other non-metallic mineral products. In columns 1-2, the dependent variable
is the loan growth in percentage points of firm i received from bank b in a given year t, calculated
as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%. The dependent variable in columns 3-4 is a 0/1 dummy variable

indicating whether a given firm received new loans from a given bank b in a given year. All regressions
include fixed effects and control variables as specified. The sample starts in 2003 and ends in 20l9. The
detailed firm-level and bank-level control variable definitions are described in Table 1. Robust standard
errors clustered at the firm level are reported in parentheses in all columns. Significance levels: ***1%,
**5%, *10%.

61



Table 11: Climate Risks and Lending: Lending Familiarity

Loan Growth New Loans Loan Growth New Loans
(1) (2) (3) (4)

Physical Risks -0.331 0.001 -1.492*** -0.006***
(0.815) (0.002) (0.488) (0.002)

Transition Risks -1.183 0.000 -2.521*** -0.010***
(0.866) 0.000 (0.523) (0.002)

Repeat Lending x Physical Risks -1.161 -0.008***
(0.770) (0.002)

Repeat Lending x Transition Risks -1.338* -0.010***
(0.772) (0.002)

First Time Lending x Physical Risks 1.161 0.008***
(0.770) (0.002)

First Time Lending x Transition Risks 1.338* 0.010***
(0.772) (0.002)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes
R-sq 0.112 0.187 0.112 0.187
N 189,142 220,890 189,142 220,890

Notes: The table presents the estimation results for the role of banks’ lending familiarity in the observed
relations between climate risks and lending. The estimation is based on versions of Equation (2), where we
augment the model with interaction terms. In columns 1-2, the dependent variable is the loan growth in
percentage points of firm i received from bank b in a given year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
×

100%. The dependent variable in columns 3-4 is a 0/1 dummy variable indicating whether a given firm
received new loans from a given bank b in a given year. ‘Repeat Lending” is a 0/1 dummy variable
indicating whether the same bank has previously extended loans from the same firm, while “First Time
Lending” is a dummy variable equal to one if a given bank has never initiated loans to a given firm in
the past. All regressions include fixed effects and control variables as specified. The sample starts in
2003 and ends in 20l9. The detailed firm-level and bank-level control variable definitions are described
in Table 1. Robust standard errors clustered at the firm level are reported in parentheses in all columns.
Significance levels: ***1%, **5%, *10%.
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Table 12: Climate Risks and Lending: Banks’ Exposure and Specialization Lending

Loan Growth New Loans Loan Growth New Loans
(1) (2) (3) (4)

Physical Risks -0.608 -0.004* -1.818*** -0.008***
(0.631) (0.002) (0.557) (0.002)

Transition Risks -1.648 0 -1.951*** -0.006***
(1.024) 0.000 (0.545) (0.001)

High Exposure Bank x Physical Risks -1.699** -0.002
(0.720) (0.003)

High Exposure Bank x Transition Risks -0.736 -0.007***
(0.974) (0.001)

Brown Industry Specialization x Physical Risks 0.795 0.007***
(0.673) (0.003)

Brown Industry Specialization x Transition Risks -1.157 0.006***
(1.089) (0.001)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes
R-sq 0.088 0.140 0.087 0.140
N 189,142 220,890 189,142 220,890

Notes: The table presents the estimation results for the role of banks’ own exposure to climate risks
and specialization lending in the observed relations between climate risks and lending. The estimation
is based on versions of Equation (2), where we augment the model with interaction terms. In columns
1-2, the dependent variable is the loan growth in percentage points of firm i received from bank b in
a given year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%. The dependent variable in columns 3-4

is a 0/1 dummy variable indicating whether a given firm received new loans from a given bank b in a
given year. “High Exposure Bank” is a dummy variable equal to one if a bank’s exposure to physical or
transition risks, calculated as the loans-weighted average of physical or transition risks, are above 75th
percentile of the sample. “Brown Industry Specialization” is a dummy equal to 1 if banks specialized
in brown industry, defined if the share of total lending of a given bank in a given year extended to the
brown industry is in the 75th percentile of the brown industry. All regressions include fixed effects and
control variables as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and
bank-level control variable definitions are described in Table 1. Robust standard errors clustered at the
firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table 13: Climate Risks and Credit Demand Proxies

Investment
Growth

Employment
Growth

Fixed Assets
Growth Sale Growth

(1) (2) (3) (4)

Physical Risks -1.529 0.003 0.001 -0.161
(1.145) (0.002) (0.204) (0.163)

Transition Risks -0.242 0.000 0.012 -0.002
(0.236) (0.001) (0.025) (0.003)

Firm Fixed Effects Yes Yes Yes Yes
Parish Fixed Effects Yes Yes Yes Yes
2-digit Industry-Time Fixed Effects Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes

R-sq 0.204 0.201 0.25 0.339
N 204,175 218,934 217,494 218,807

Notes: The table presents the estimation results for the climate risks variables and proxies for credit
demand, as shown in Equation (7). Columns 1 and 2 use investment growth and employment growth
as dependent variables, respectively, to serve as proxies for credit demand from expanding firms. The
dependent variable in column 3 is fixed asset growth, as a measure of needs for capital expenditure, while
column 4 uses sales growth to measure the demand for working capital. All RHS variables are lagged by
one year. All regressions include fixed effects as specified. The sample starts in 2003 and ends in 20l9.
The detailed firm-level variable definitions are described in Table 1. Robust standard errors clustered at
the firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table 14: Climate Risks and Credit Demand: Firms with Positive Credit Demand

Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans
Included Sample Positive Invest-

ment Growth
Positive Employ-
ment Growth

Positive Fixed As-
sets Growth

Positive Sale
Growth

(1) (2) (3) (4) (5) (6) (7) (8)

Physical Risks -2.245*** -0.008** -0.317 -0.004 -1.276 -0.002 -1.817** -0.008***
(0.856) (0.003) (0.705) (0.003) (0.816) (0.003) (0.747) (0.003)

Transition Risks -3.683*** -0.001 -2.113** -0.008*** -2.543** -0.001 -1.827 -0.001
(1.021) (0.001) (0.847) (0.002) (1.029) (0.001) (1.158) (0.001)

Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Parish Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
2-digit Industry-Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Bank-Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes Yes Yes Yes Yes

R-sq 0.18 0.212 0.14 0.185 0.169 0.206 0.145 0.188
N 81,051 95,796 108,614 127,182 80,071 93,992 103,634 121,371

Notes: The table presents the estimation results for Equation (5) to test for the credit demand effect,
conditional on those firms with positive credit demand. The dependent variable in columns 1, 3, 5, 7
is the loan growth in percentage points of firm i received from bank b in a given year t, calculated as

(loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%, for the intensive margin. The dependent variable in columns 2, 4, 6,
8 is a 0/1 dummy variable indicating whether a given firm received new loans from a given bank b in a
given year for the extensive margin. Firms with positive credit demands tend to be those experiencing
growth and requiring substantial funding for capital expenditures or working capital. In columns 1-4, we
focus on firms with positive investment and employment growth as proxies for growing firms. Columns
5-6 include firms with positive fixed asset growth as an indicator of funding needs for capital expenditure,
while columns 7-8 use a sample of firms with positive sales growth to measure the demand for working
capital. All RHS variables are lagged by one year. All regressions include fixed effects as specified. The
sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level control variable definitions
are described in Table 1. Robust standard errors clustered at the firm level are reported in parentheses
in all columns. Significance levels: ***1%, **5%, *10%.
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Table 15: Climate Risks and Lending: Adding ILST Fixed Effects

Loan Growth New Loans
(1) (2) (3) (4) (5) (6)

Physical Risks -0.587 -0.001 -0.606 -0.002 -0.785 -0.006
(0.625) (0.002) (0.898) (0.003) (1.139) (0.004)

Transition Risks -1.573*** -0.007*** -1.601*** -0.008*** -1.580* -0.009***
(0.426) (0.001) (0.484) (0.002) (0.913) (0.003)

Parish Fixed Effects Yes Yes Yes Yes
2-digit Industry-Time Fixed Effects Yes Yes
Bank-Time Fixed Effects Yes Yes Yes Yes Yes Yes
Bank-Firm Fixed Effected Yes Yes Yes Yes Yes Yes
Industry-Location-Size Fixed Effects (ILS) Yes Yes
Industry-Location-Time Fixed Effects (ILT) Yes Yes
Industry-Location-Size-Time Fixed Effects (ILST) Yes Yes
Firm Variables Yes Yes Yes Yes Yes Yes

R-sq 0.235 0.303 0.327 0.379 0.421 0.461
N 176,635 206,903 167,697 198,441 151,469 182,448

Notes: The table presents the estimation results for the climate risks and lending with granular high-
dimensional fixed effects, in addition to the fixed effects included in Equation (6). The dependent variable
in column 1 to 3 is the loan growth in percentage points of firm i received from bank b in a given year
t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%, for the intensive margin. The dependent variable in

column 4 to 6 is a 0/1 dummy variable indicating whether a given firm received new loans from a given
bank b in a given year for the extensive margin. We saturate the model with Industry-Location-Size
Fixed Effects (ILS) in column 1 and 3, Industry-Location-Time Fixed Effects (ILT) in column 2 and 4,
and Industry-Location-Size-Time Fixed Effects (ILST) in column 3 and 6. All regressions include fixed
effects and control variables as specified. The sample starts in 2003 and ends in 20l9. The detailed
firm-level and bank-level control variable definitions are described in Table 1. Robust standard errors
clustered at the firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%,
*10%.

66



Table 16: Climate Risks and Credit Risk Channel

Exit Low EBIT Financial Distress
(1) (2) (3)

Physical Risks 0.000 0.000 0.003
(0.001) (0.002) (0.003)

Transition Risks 0.000 0.003* 0.002*
0.000 (0.001) (0.001)

Firm Fixed Effects Yes Yes Yes
Parish Fixed Effects Yes Yes Yes
2-digit Industry-Time Fixed Effects Yes Yes Yes
Firm Variables Yes Yes Yes

R-sq 0.431 0.369 0.449
N 219,185 219,185 219,185

Notes: The table presents the estimation results to test for the credit risk channel. The dependent
variable in column 1 is the firms’ likelihood to exit the sample as a proxy for the probabilities of firm
default or bankruptcy. The dependent variable in column 2 is a dummy indicating negative EBIT. The
dependent variable in column 3 is a dummy for a high financial stress level, defined as 1 if a firm has a
low-interest coverage ratio (ICR), calculated as EBIT divided by interest expenses to measure how well
a firm can pay the interest due on outstanding debt. All RHS variables are lagged by one year. All
regressions include fixed effects as specified. The sample starts in 2003 and ends in 20l9. The detailed
firm-level variable definitions are described in Table 1. Robust standard errors clustered at the firm level
are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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APPENDIX

A A Simple Model of Bank Portfolio Choice for Green
and Brown Firm

The findings overall suggest that banks divest from firms with high exposure to physical
or transition risks. To rationalize this, I present a simple partial equilibrium model that
analyzes the optimal portfolio allocation for a bank that can lend to a green firm (lower
exposure to physical risks, transition risks, or interaction of both risks) or a brown firm
(higher exposure firms) or invest in a risk-free asset. As climate risks can affect both the
mean return and volatility of the firm’s profitability (Huang et al., 2018; Pham et al., 2023;
Bonato et al., 2023), I assume that banks perceive that the green firm has a higher expected
return and lower volatility than the brown firm. While not directly empirically tested, I also
incorporate a green preference parameter for the bank’s non-financial motives in prioritizing
green investments (Pedersen et al., 2021; Pástor et al., 2021).

Specifically, I consider that a bank can adjust the weight/share of total loan lending to
a green firm (wg), a brown firm (wg), and a risk-free asset (wf ), with the expected returns
denoted as µg, µb, and rf respectively. The volatility for green and brown firms is σg and σb,
with ρ representing the correlation coefficient between the returns of the green and brown
firms. I assume that µg > µb while σg <σb. The bank’s risk aversion parameter is denoted
as λ, and α is the green preference parameter, where a higher value of α indicates a stronger
preference for the green firm (I assume α ≥ 0). Using a simple mean-variance framework,
the bank’s objective is to maximize the portfolio’s expected return while minimizing risk and
incorporating the preference for green investments. The utility function of the bank is given
by:

U = wTµ− λ

2
wTΣw + αwg

s.t.
wg + wb + wf = 1

wg, wb, wf ≥ 0

As shown in the proof Appendix A.1, I can then solve the closed-form solutions for the
optional weight for allocating to green firm (wg) and brown firm (wb):
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wg =
σ2
b (µg − rf )− ρσgσb(µb − rf ) + ασ2

b

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )

wb =
σ2
g(µb − rf )− ρσgσb(µg − rf )

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )

To directly compare wg and wb, I calculate the difference wg − wb:

wg − wb =
σ2
b (µg − rf )− σ2

g(µb − rf ) + ασ2
b + ρσgσb(µg − µb)

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )

Given the assumption that µg > µb, σg < σb and α > 0, I can infer wg − wb > 0. As a
result, the bank’s optimal portfolio allocation will tilt a higher share of loans to green firms
than to brown firms due to the financial attractiveness of the green firms from a risk and
return perspective, as well as a taste for investing in green firms.

A.1 Additional proof

To maximize the utility function subject to the constraints, I set up the Lagrangian function:

L = wgµg+wbµb+(1−wg−wb)rf−
λ

2

(
w2

gσ
2
g + w2

bσ
2
b + 2wgwbρσgσb

)
+αwg+γ(wg+wb+wf−1)

I can then solve for the optimal weights by taking the partial derivatives and differentiate
L with respect to wg, wb, and γ.

∂L
∂wg

= µg − rf − λ(wgσ
2
g + wbρσgσb) + α + γ = 0

∂L
∂wb

= µb − rf − λ(wbσ
2
b + wgρσgσb) + γ = 0

∂L
∂γ

= wg + wb + wf − 1 = 0

Solving for the equations:
First, I can isolate γ:

γ = λ(wgσ
2
g + wbρσgσb)− µg + rf − α

γ = λ(wbσ
2
b + wgρσgσb)− µb + rf

Equate the two expressions for γ:
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λ(wgσ
2
g + wbρσgσb)− µg + rf − α = λ(wbσ

2
b + wgρσgσb)− µb + rf

Simplify and solve for wg and wb:

λwgσ
2
g + λwbρσgσb − µg + rf − α = λwbσ

2
b + λwgρσgσb − µb + rf

Rearranging terms:

λwg(σ
2
g − ρσgσb) = λwb(σ

2
b − ρσgσb) + µg − µb + α

Isolate wg:

wg =
λwb(σ

2
b − ρσgσb) + µg − µb + α

λ(σ2
g − ρσgσb)

Substitute wg back into the budget constraint wg + wb + wf = 1:

λwb(σ
2
b − ρσgσb) + µg − µb + α

λ(σ2
g − ρσgσb)

+ wb + wf = 1

After solving the above equation for wg and wb, I get the closed-form solutions:

wg =
σ2
b (µg − rf )− ρσgσb(µb − rf ) + ασ2

b

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )

wb =
σ2
g(µb − rf )− ρσgσb(µg − rf )

λ(σ2
gσ

2
b − ρ2σ2

gσ
2
b )

B Additional Literature Review

B.1 Climate risks and other financial markets

A large amount of literature in this line of work has focused on whether and how transition
risks, commonly using different measures of carbon emissions or environmental policies as
proxies, are priced in the financial market (Altavilla et al., 2023). Previous literature has
found support that investors collectively value sustainability (Starks, 2023; Hartzmark and
Sussman, 2019; Baker et al., 2022b; Krueger et al., 2020; Heeb et al., 2023; Ilhan et al., 2023;
Flammer, 2015). For instance, in the equity market, there is evidence for the presence of
either a carbon or a pollution premium, i.e., investors asking for higher returns to compensate
for carbon (Bolton and Kacperczyk, 2021, 2023; Pástor et al., 2022; Bolton et al., 2022) or
pollution (Hsu et al., 2023) risk exposure. Similar evidence is found in the options market
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(Ilhan et al., 2021) and the real estate market (Bernstein et al., 2022; Giglio et al., 2021;
Eichholtz et al., 2013, 2010; Baldauf et al., 2020). In the bond market, Seltzer et al. (2022);
Baker et al. (2022a); Köuml;lbel and Lambillon (2022); Zerbib (2019) document a premium
for green bonds while Larcker and Watts (2020); Flammer (2021) find no difference in yields.

Regarding physical risks, prior studies find that sea-level rise (SLR) exposure risks are
priced in the bond market (Goldsmith-Pinkham et al., 2015), and in the real estate market
(Bernstein et al., 2019; Baldauf et al., 2020; Nguyen et al., 2022).

B.2 Climate risks and the pricing of loans

Studies have so far found mixed evidence regarding the pricing of transition risks in bank
loans. On the one hand, there is positive evidence that banks price stringent environmental
regulations (Fard et al., 2020b), environmental concerns such as hazardous chemicals, sub-
stantial emissions (Chava, 2014), or higher carbon emissions (Ehlers et al., 2022; Altavilla
et al., 2023), and price firms’ holdings of fossil fuel reserves after 2015 (Delis et al., 2024).
Moreover, green banks rewarded cheaper loans to green firms after 2015 (Degryse et al.,
2023), and there is assortative firm-bank matching based on their ESG profiles (Houston
and Shan, 2022). On the other hand, other researchers do not find evidence that banks in
the syndicated loan market price this risk of stranded assets held by fossil fuel firms (Beyene
et al., 2021) and flood risk (Schubert, 2021). Antoniou et al. (2020) document that in con-
trast with the program intentions of the EU Emission Trading System (EU ETS), there is
a significant decline in loan spreads among those participating firms. Huang et al. (2021)
find state-owned banks failed to price in environmental policy exposure while joint-equity
commercial banks manage better.

Mixed evidence is also found in the price of physical risks in the bank credit market,
Javadi and Masum (2021) find firms with higher exposure to drought risk pay higher spreads
on their bank loans while Schubert (2021) and Garbarino and Guin (2021) do not find that
banks fully price the flood risk and track the impact of floods ex-post closely.
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C Additional tables

Table A1: Climate Risks and Loan Growth: Dependent Variable Robustness

Log(loans) Logarithmic Growth Positive Loan Growth
(1) (2) (3)

Physical Risks -0.025* -2.163** -0.266
(0.014) (0.951) (0.268)

Transition Risks -0.010 -3.009** -0.876***
(0.011) (1.284) (0.223)

Firm Fixed Effects Yes Yes Yes
Time Fixed Effects Yes Yes Yes
Bank Fixed Effects Yes Yes Yes
Parish Fixed Effects Yes Yes Yes
2-digit Industry Fixed Effects Yes Yes Yes
Firm Variables Yes Yes Yes
Bank Variables Yes Yes Yes

R-sq 0.565 0.089 0.155
N 162,871 150,699 187,760

Notes: The table presents the estimation results for the effects of physical and transition risks on al-
ternative dependent variable measures from OLS regressions. The dependent variable in column 1 is
the log of loan amounts log(loanibt). In column 2, the dependent variable is the logarithmic growth of
loans in percentage points, calculated as log(loanibt)− log(loanibt−1)× 100. Due to the presence of zero
values in the loan account balances, taking the logarithm results in these observations being treated as
missing data, reducing the number of observations in the estimation. In column 3, we focus on positive
loan growth, setting negative loan growth to zero. The main independent variables are physical risks
indicators and transition risks indicators. All RHS variables are lagged by one year. All regressions
include fixed effects as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and
bank-level control variable definitions are described in Table 1. Robust standard errors clustered at the
firm level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table A2: Climate Risks and Loan Growth: Alternative Decay Parameters

Loan Growth New Loans
(1) (2)

Decay Parameter: 0.01 -2.526* -0.011**
(1.307) -(0.005)

Decay Parameter: 0.02 -2.681*** -0.009***
(0.910) -(0.003)

Decay Parameter: 0.03 -2.392*** -0.007***
(0.731) -(0.003)

Decay Parameter: 0.04 -2.004*** -0.006***
(0.628) -(0.002)

Decay Parameter: 0.05 -1.687*** -0.005**
(0.566) -(0.002)

Decay parameter: 0.06 -1.448*** -0.005**
(0.529) -(0.002)

Decay parameter: 0.07 -1.264** -0.004**
(0.505) -(0.002)

Decay parameter: 0.08 -1.119** -0.004**
(0.489) -(0.002)

Decay parameter: 0.09 -0.998** -0.003*
(0.479) -(0.002)

Decay parameter: 0.1 -0.895* -0.003*
(0.472) -(0.002)

Firm Fixed Effects Yes Yes
Time Fixed Effects Yes Yes
Bank Fixed Effects Yes Yes
Firm Variables Yes Yes
Bank Variables Yes Yes

R-sq 0.087 0.14
N 189,142 220,890

Notes: The table presents the estimation results for Equation (2), using alternative levels of decay
parameter to construct physical risks indicator (??). For the sake of brevity, only the estimated coefficients
for physical risks are reported. In column 1, the dependent variable is the loan growth in percentage
points of firm i received from bank b in a given year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%.

The dependent variable in column 2 is a 0/1 dummy variable indicating whether a given firm received
new loans from a given bank b in a given year for the extensive margin. All RHS variables are lagged
by one year. All regressions include fixed effects as specified. The sample starts in 2003 and ends in
20l9. The detailed firm-level and bank-level control variable definitions are described in Table 1. Robust
standard errors clustered at the firm level are reported in parentheses in all columns. Significance levels:
***1%, **5%, *10%.

73



Table A3: Climate Risks and Lending: Alternative Definitions of Transition Risks

Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans
(1) (2) (3) (4) (5) (6) (7) (8)

Energy Intensity (Scope 2) X Climate Policy Change -0.615*** -0.002***
(0.227) -(0.001)

Energy Intensity (Scope 2) X Energy Tax -2.255*** -0.001
(0.680) -(0.001)

Emission Intensity (Scope 1) X Enviromental Tax -0.715*** 0.001
(0.078) (0.000)

Energy intensity (Scope 2) -0.005** -0.000**
(0.002) (0.000)

Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes Yes Yes Yes Yes
R-sq 0.085 0.138 0.086 0.139 0.085 0.139 0.085 0.138
N 198,997 232,357 192,923 225,334 200,274 234,194 198,997 232,357

Notes: The table presents the estimation results for banks’ lending response to transition risks from OLS
regressions, with alternative definitions of transition risks. In columns 1-2, we measure transition risks
as Transition risksit = Energy intensityit × Climate policy changet for firm, i, year t, to capture firms’
exposure to changes in policy related to climate mitigation and energy efficiency in Denmark and the
EU, documented in the IEA database. In columns 3-4, transition risks are proxied by the interaction
between energy intensity and total energy taxes at the industry-year level, i.e., Transition risksit =

Energy intensityit×
Energy taxjt

Value addedjt
for firm i, industry j, and year t. To address the concerns that firm-level

energy intensity only captures scope 2 emission, in columns 4-5, we use scope 1 emissions at the industry-
year level and calculate transition risks as Transition risksjt =

GHG emissionsjt
Value addedjt

× Environmental taxjt

Value addedjt
, for

industry j, and year t. In columns 7-8, we simplify our measure of transition risks by excluding policy
stringency and only include firm-level energy intensity (Scope 2) as a proxy. The dependent variable
in column 1, 3, 5, and 7 is the loan growth in percentage points of firm i received from bank b in a
given year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%. The dependent variable in columns 2, 4, 6,

8 is a 0/1 dummy variable indicating whether a given firm received new loans from a given bank b in a
given year. All RHS variables are lagged by one year. All regressions include fixed effects and control
variables as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level
control variable definitions are described in Table 1. Robust standard errors clustered at the firm level
are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.

74



Table A4: Climate Risks and Lending: Base Year Approach

Loan Growth New Loans
(1) (2)

Physical Risks -1.589*** -0.005**
(0.488) (0.002)

Transition Risks (Base Year Approach) -0.318* 0.001
(0.169) (0.000)

Firm Fixed Effects Yes Yes
Time Fixed Effects Yes Yes
Bank Fixed Effects Yes Yes
Firm Variables Yes Yes
Bank Variables Yes Yes
R-sq 0.084 0.137
N 188,851 220,214

Notes: The table presents the estimation results for climate risks and banks’ lending, using a base year
definition for transition risks to alleviate the reserve causality concerns, i.e., measuring a firm’s emission
intensity in the first year in which a firm in the sample is observed. Specifically, Transition risksijt is
calculated as: Transition risksijt = Emission intensityij0×Environmental taxjt. The dependent variable
in column 1 is the loan growth in percentage points of firm i received from bank b in a given year t,
calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%. The dependent variable in column 2 is a 0/1 dummy

variable indicating whether a given firm received new loans from a given bank b in a given year. All RHS
variables are lagged by one year. All regressions include fixed effects and control variables as specified.
The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level control variable
definitions are described in Table 1. Robust standard errors clustered at the firm level are reported in
parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table A5: Climate Risks and Lending: Alternative Specification

Loan Growth New Loans Loan Growth New Loans
(1) (2) (3) (4)

Physical Risks, Lag 1 -0.721 -0.003 -1.979*** -0.008***
(0.640) (0.002) (0.758) (0.003)

Transition Risks, Lag 1 -1.464*** -0.001 -3.914*** -0.008***
(0.445) (0.001) (1.230) (0.002)

Physical Risks, Lag 2 -1.206* -0.002
(0.693) -(0.003)

Transition Risks, Lag 2 -0.549 -0.001
(0.688) -(0.001)

Physical Risks, Squared 0.144 0.001
(0.162) -(0.001)

Transition Risks, Squared 0.033* 0.000***
(0.017) (0.000)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes
R-sq 0.097 0.149 0.087 0.140
N 140,004 161,204 189,142 220,890

Notes: The table presents the estimation results for banks’ lending response to transition risks from OLS
regressions, with alternative specifications. In columns 1-2, we re-estimate Equation (2) by introducing
a second lag climate risks variables to consider banks’ medium and long-run response to climate risks.
In columns 3-4, we add the squares of climate risks variables in Equation (2) to explore the possible
existence of non-linearity in the effects of climate risks. The dependent variable in column 1 and 3 is
the loan growth in percentage points of firm i received from bank b in a given year t, calculated as

(loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

× 100%. The dependent variable in column 2 and 4 is a 0/1 dummy variable
indicating whether a given firm received new loans from a given bank b in a given year. All RHS variables
are lagged by one year. All regressions include fixed effects and control variables as specified. The sample
starts in 2003 and ends in 20l9. The detailed firm-level and bank-level control variable definitions are
described in Table 1. Robust standard errors clustered at the firm level are reported in parentheses in
all columns. Significance levels: ***1%, **5%, *10%.
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Table A6: Climate Risks and Lending: Alternative Clustering Scheme

Loan Growth
(1) (2) (3) (4) (5) (6)

Physical Risks -1.368*** -1.448*** -1.237** -1.238** -1.279*** -1.124**
(0.504) (0.506) (0.485) (0.485) (0.445) (0.550)

Transition Risks -2.208** -2.183*** -2.079*** -2.125** -1.782** -1.630**
(0.866) (0.828) (0.789) (0.818) (0.713) (0.751)

Firm Fixed Effects Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Parish Fixed Effects Yes Yes Yes Yes
2-digit Industry Fixed Effects Yes
2-digit Industry-Time Fixed Effects Yes Yes
Bank-Time Fixed Effects Yes Yes
Bank-Firm Fixed Effects Yes
Firm Variables Yes Yes Yes Yes Yes
Bank Variables Yes Yes Yes
R-sq 0.086 0.087 0.096 0.097 0.123 0.190
N 189,200 189,142 187,764 187,760 187,700 179,374

New Loans
(1) (2) (3) (4) (5) (6)

Physical Risks -0.005** -0.005** -0.004** -0.004** -0.003** -0.003
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Transition Risks -0.001 -0.001 -0.001 -0.001 -0.002 -0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Firm Fixed Effects Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes
Parish Fixed Effects Yes Yes Yes Yes
2-digit Industry Fixed Effects Yes
2-digit Industry-Time Fixed Effects Yes Yes
Bank-Time Fixed Effects Yes Yes
Bank-Firm Fixed Effects Yes
Firm Variables Yes Yes Yes Yes Yes
Bank Variables Yes Yes Yes

R-sq 0.139 0.140 0.147 0.148 0.171 0.265
N 220,963 220,890 219,228 219,225 219,167 209,659

Notes: The table presents the estimation results for the effects of physical and transition risks on lending
from OLS regressions, clustering at both the firm and bank levels (multi-way clustering). The dependent
variable in the first panel is the loan growth in percentage points of firm i received from bank b in a given
year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%. The dependent variable in the second panel is a

0/1 dummy variable indicating whether a given firm received new loans from a given bank b in a given
year, for the extensive margin. All RHS variables are lagged by one year. All regressions include fixed
effects as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level
control variable definitions are described in Table 1. Robust standard errors clustered at the firm and
the bank level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table A7: Climate Risks and Lending: Alternative Sub-samples, Firm Level

Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans
Included Sample Include incumbent

firms in the last 10
years

Exclude entrant firms Exclude firms exiting
the sample

(1) (2) (3) (4) (5) (6)

Physical Risks -2.080*** -0.006** -1.474*** -0.005** -1.383*** -0.004**
(0.702) -(0.003) (0.494) -(0.002) (0.493) (0.002)

Transition Risks -2.794*** -0.006** -2.157*** -0.001 -2.229*** -0.001
(0.807) -(0.003) (0.565) (0.001) (0.585) (0.001)

Firm Fixed Effects Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes Yes Yes
R-sq 0.071 0.124 0.086 0.139 0.085 0.138
N 80,258 93,875 186,087 216,991 185,425 216,551

Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans
Included Sample Exclude highly pro-

ductive firms
Exclude firms that relo-
cate

Exclude firms in
Copenhagen

(7) (8) (9) (10) (11) (12)

Physical Risks -1.528** -0.005** -1.865*** -0.010*** -1.325*** -0.004**
(0.595) (0.002) (0.695) (0.003) (0.506) (0.002)

Transition Risks -3.931*** -0.009** -2.200*** -0.001 -1.988*** -0.001
(1.308) (0.004) (0.620) (0.001) (0.512) (0.001)

Firm Fixed Effects Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes Yes Yes
R-sq 0.093 0.148 0.092 0.145 0.090 0.144
N 129,517 151,862 123,980 144,362 169,305 196,559

Notes: The table presents the firm-level sample robustness checks for estimation results for the effects
of physical and transition risks on lending from OLS regressions, based on Equation (2). In columns
1-2, only incumbent firms in the last 10 years (2009 to 2019) are included. Columns 3-4 exclude entrant
firms that were formed in the sample period, while columns 4-5 exclude firms that exit during the sample
periods. In columns 7-8, we exclude those highly productive firms, defined if firm productivity ( revenue

firm size )
is above the 75th percentiles of the entire sample. Columns 9-10 exclude a sample of firms that relocate
to different municipalities, while columns 11-12 exclude firms located in the capital city. The dependent
variable in columns 1, 3, 5, 7, 9, 11 is the loan growth in percentage points of firm i received from bank b
in a given year t, for the intensive margin, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
×100%. The dependent

variable in columns 2, 4, 6, 8, 10, 12 is a 0/1 dummy variable indicating whether a given firm received new
loans from a given bank b in a given year, for the extensive margin. All RHS variables are lagged by one
year. All regressions include fixed effects as specified. The sample starts in 2003 and ends in 20l9. The
detailed firm-level and bank-level control variable definitions are described in Table 1. Robust standard
errors clustered at the firm and the bank level are reported in parentheses in all columns. Significance
levels: ***1%, **5%, *10%.
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Table A8: Climate Risks and Lending: Alternative Sub-samples, Bank Level

Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans Loan Growth New Loans
Included Sample Exclude small banks Include incumbent banks Exclude banks exiting

the sample
Exclude banks located
in the capital region

Exclude banks with
single establishment

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Physical Risks -1.447** -0.003 -1.374** -0.005** -1.383*** -0.004** -1.444** -0.004 -1.350** -0.004*
(0.629) -(0.002) (0.636) -(0.002) (0.493) (0.002) (0.657) (0.002) (0.578) (0.002)

Transition Risks -3.244*** -0.002 -1.635*** -0.001 -2.200*** -0.001 -1.996*** -0.001 -2.454*** -0.002
(0.618) -(0.001) (0.550) (0.001) (0.576) (0.001) (0.765) (0.001) (0.547) (0.001)

Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-sq 0.129 0.190 0.103 0.156 0.088 0.142 0.156 0.208 0.132 0.188
N 133,448 163,470 103,527 120,328 184,571 215,538 118,346 143,307 152,263 183,257

Notes: The table presents the bank-level sample robustness checks for estimation results for the effects
of physical and transition risks on lending from OLS regressions, based on Equation (2). In columns 1-2,
we exclude small banks with less than 200 employees. In columns 3-4, only incumbent banks in the last
10 years (2009 to 2019) are included. Columns 5-6 exclude banks that exit during the sample periods.
In columns 7-8, we exclude banks in the capital region of Denmark. Columns 9-10 exclude a sample
of banks with only one establishment. The dependent variable in columns 1, 3, 5, 7, and 9 is the loan
growth in percentage points of firm i received from bank b in a given year t, for the intensive margin,
calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%. The dependent variable in columns 2, 4, 6, 8, and 10 is a

0/1 dummy variable indicating whether a given firm received new loans from a given bank b in a given
year for the extensive margin. All RHS variables are lagged by one year. All regressions include fixed
effects as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level
control variable definitions are described in Table 1. Robust standard errors clustered at the firm and
the bank level are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table A9: Climate Risks and Lending: Response to the Tail Risks, Fixed Distribution and
Climate Risks Index

Loan Growth New Loans
(1) (2) (3) (4)

High PR -2.207** -1.977** -0.005 -0.004
(0.969) (0.973) (0.004) (0.004)

High TR -2.907*** -2.660** -0.005 -0.007
(1.018) (1.095) (0.004) (0.004)

Low PR 0.023 0.097 0.002 0.002
(0.992) (1.017) (0.004) (0.004)

Low TR 0.952 0.79 -0.003 -0.002
(1.001) (1.042) (0.004) (0.004)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes
Bank Fixed Effects Yes Yes
Parish Fixed Effects Yes Yes
2-digit Industry Fixed Effects
2-digit Industry-Time Fixed Effects Yes Yes
Bank-Time Fixed Effects Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes

R-sq 0.087 0.123 0.140 0.171
N 189,142 187,700 220,890 219,167

Loan Growth New Loans
(1) (2) (3) (4)

Climate Risks Index -2.207** -1.977** -0.005 -0.004
(0.969) (0.973) (0.004) (0.004)

Firm Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes
Bank Fixed Effects Yes Yes
Parish Fixed Effects Yes Yes
2-digit Industry Fixed Effects
2-digit Industry-Time Fixed Effects Yes Yes
Bank-Time Fixed Effects Yes Yes
Firm Variables Yes Yes Yes Yes
Bank Variables Yes Yes

R-sq 0.087 0.123 0.140 0.171
N 189,142 187,700 220,890 219,167

Notes: In the first panel of the table, we present the estimation results for banks’ lending response to the
tail physical and transition risks, with the tail risks defined based on a fixed distribution. High PR and
Low TR are set to 1 if the respective risk indicator for physical or transition risks falls into the highest
quantile of the distribution for the entire sample. Low PR and Low TR are then defined as one if the
risk falls into the lowest quantile of the distribution for the entire sample. In the second panel of the
table, we present the estimation results using the alternative composite climate risks index. Specifically,
we divide the sample into four quintiles for both physical and transition risk metrics, assigning a score
of 1 to firms in the lowest quintile, 2 in the second, and so on, with 4 for the highest quintile. We then
construct a composite climate risk index by summing the scores for each risk dimension. In columns
1-2, the dependent variable is the loan growth in percentage points of firm i received from bank b in
a given year t, calculated as (loanibt−loanibt−1)

(0.5×loanibt+0.5×loanibt−1)
× 100%. The dependent variable in columns 3-4

is a 0/1 dummy variable indicating whether a given firm received new loans from a given bank b in a
given year. All RHS variables are lagged by one year. All regressions include fixed effects and control
variables as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level
control variable definitions are described in Table 1. Robust standard errors clustered at the firm level
are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.
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Table A10: Climate Risks and Lending: Region Heterogeneity

Loan Growth
Included Sample Capital Region of Denmark Central Denmark Region North Denmark Region Region Zealand Region of Southern Denmark

(1) (2) (3) (4) (5)

Physical Risks -4.266* -2.177** -0.165 -2.07 2.395
(2.555) (1.015) (1.455) (1.699) (1.491)

Firm Fixed Effects Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes Yes
Parish Fixed Effects Yes Yes Yes Yes Yes
Firm Variables Yes Yes Yes Yes Yes
Bank Variables Yes Yes Yes Yes Yes
R-sq 0.169 0.18 0.199 0.232 0.192
N 46,434 52,213 32,786 15,662 34,496

Notes: The table presents the estimation results for the region heterogeneity on banks’ credit growth
in response to climate physical risks. We re-estimate Equation (3) with sub-samples of firms located
in 5 regions of Denmark: the Capital Region of Denmark, the Central Denmark Region, the North
Denmark Region, the Region Zealand, and the Region of Southern Denmark. The dependent variable
is the loan growth in percentage points of firm i received from bank b in a given year t, calculated as

(loanibt−loanibt−1)
(0.5×loanibt+0.5×loanibt−1)

×100%, for the intensive margin. All regressions include fixed effects and control
variables as specified. The sample starts in 2003 and ends in 20l9. The detailed firm-level and bank-level
control variable definitions are described in Table 1. Robust standard errors clustered at the firm level
are reported in parentheses in all columns. Significance levels: ***1%, **5%, *10%.

D Additional figures

Figure D.1: Illustration
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Figure D.2: Number of Firms and Banks
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Figure D.3: Share of Flood Risk by Parish

Notes: Based on flood risk in 20 years under IPCC RCP 4.5 scenario with a 100-year return period
aggregated at the parish level. The grey outlines are the boundaries for each small administrative
district. Source: author’s calculations, data provided by DTU management
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Figure D.4: The Weight Functions e−δxpr for Different Values of δ
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Notes: When δ = 0.06, neighboring parishes have a weight close to 1, while a parish at a distance of
10 km has a weight of 0.55 and another parish at a distance of 100 km weights 0.002. The average
distance between measurement stations is about 25 kilometers, varying from 10 kilometers in certain
areas to as much as 40 kilometers.
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Figure D.6: Energy Mix in Denmark, 2022

Source: IEA and author’s own calculation

Figure D.5: Energy Intensity Across Industry, 2019
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Figure D.7: Examples of Environmental Tax Bases

Source: Environmental taxes - A statistical guide (Eurostat, 2013)
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Figure D.8: Environmental Tax Across Industry (Scaled), 2019
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Figure D.9: Physical Risks Indicator by Parish over Time

(a) Physical risks indicator, 2009 (b) Change from 2009 to 2019

Notes: Physical risks indicator is an interaction between projected flood risk and historical extreme precip-
itation event frequency at the parish level, using distance weighted sum with decay parameter δ equals 0.06.
Flood risk measures the share of the parish that is exposed to 100-year-year flood events on the 20-year
horizon under the IPCC RCP 4.5 scenario; extreme precipitation is based on weather data from DMI.
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Figure D.10: Sources of Identification: Variation Across Time

Figure D.11: Sources of Identification: Variation Across Firm
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Figure D.12: Interaction of Physical and Transition Exposure

Figure D.13: IEA climate policy changes over time
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Figure D.14: Number of Firms that Exit the Sample
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Notes: The start year (2014) and end of the sample year (2019) are excluded.

90


	Introduction
	Related Literature and Conceptual Framework
	Related Literature
	Conceptual Framework and Hypotheses

	Data
	Danish Administration Data
	Employer-employee data
	Credit data
	Sample constructions

	Exposure to climate risks 
	Physical risks data
	Transition risks data


	Empirical Strategy and Identification
	Empirical specification and identification
	Threats to identification

	Empirical Results
	Do banks adjust credit allocation?
	Intensive margin of lending
	Extensive margin of lending
	Extension: alternative credit outcomes and extreme risks dummy
	Alternative tests and robustness checks

	Do banks allocate more credit to risky and ``greening" firms?
	The role of interactions of physical and transition risks
	Heterogeneity analysis
	Borrower-level factors
	Bank-level factors

	Mechanisms
	Climate risks and credit demand
	Climate risks and credit supply


	Conclusion and Discussion
	Tables
	A Simple Model of Bank Portfolio Choice for Green and Brown Firm
	Additional proof

	Additional Literature Review
	Climate risks and other financial markets
	Climate risks and the pricing of loans

	Additional tables
	Additional figures

